K.S.RANGASAMY COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) TIRUCHENGODE – 637 215.

DEPARTMENT OF COMPUTER SCIENCE - DATA SCIENCE

ELECTIVE COURSES:

SEMESTER - V

- 1. Social Media Mining
- 2. Natural Language Processing

SEMESTER - VI

- 1. Artificial Intelligence and Expert Systems
- 2. Information Retrieval Techniques

Enclosures:

- i. Copy of Scheme of Examination
- ii. Syllabus copy of the elective course
- iii. Mapping of the courses.

HoD - B.Sc [CS-DS]

HEAD,
Department of Computer Science,
K.S. Rangasamy College of Arts and
Science (Autonomous),
TIRUCHENGODE-637 215.

K-CoE

Mr. M. PRASAD, M.Sc., M.B.A., M.Phil.
Controller of Examinations
K.S. Rangasamy College of Arts & Science (Automore)
Tirucher goods - 637 215. Tamilnadu. Inc.

B.Sc., Computer Science-Data Science (Students admitted from 2020-2021 onwards)

NON MAJOR ELECTIVE COURSE

The department offers the following two subjects as Non Major Elective Course for other than the computer science – data science students for third and fourth semesters.

S.No.	Semester	mester Subject Code S	
1	III	20UDSNM301	Internet Technology
2	IV	20UDSNM401	Principles of Web Design

ELECTIVE I

(Student shall select any one of the following subject as Elective in fifth semester)

S.No	Subject Code	Subject	
1.	20UDSEL501	Social Media Mining	
2.	20UDSEL502	Natural Language Processing	

ELECTIVE II

(Student shall select any one of the following subject as Elective in sixth semester)

S.No	Subject Code	Subject
1.	20UDSEL601	Artificial Intelligence and Expert Systems
2.	20UDSEL602	Information Retrieval Techniques

Mr. M PRASAD, M.Sc., M.B.X., M.:

Controller of Exemination's

KS. Rangssamy College of Arts 1 Science (Authoritis)

Tiruchlangode - 637 215, Tamilinadu, Incla.

B.Sc., Computer Science-Data Science (Students admitted from 2020–2021 onwards)

		TTT					
	Part	Ш					
20UDSM501	Core IX: Data Mining and Warehousing	6	3	25	75	100	5
20UDSM502	Core X: Software Engineering	5	3	25	75	100	5
20UDSM503	Core XI: Operating Systems	5	3	25	75	100	4
	Elective: I	5	3	. 25	75	100	4
20UDSMP501	Core Practical VI: R Programming	3	3	40	60	100	2
20UDSMP502	Core Practical VII: Computer Hardware	3	3	40	60	100	2
	Par	t IV					
20UDSSBP501	SBC Practical III: MySQL(Internal Evaluation)	2	3	100	-	100	2
	Par	t V					
20UDSE501	Extension Activity	7	-	-	ŭ <u>≅</u> !	-	2
	Non (Credit				L L	
18ULS501	Career Competency Skills	1			-	-	-
		30				700	26
Sixth Semester							
	Par	: III					
20UDSM601	Core XII: Python Programming	6	3	25	75	100	5
20UDSM602	Core XIII: Computer Networks [Fifth Unit as Self-study]	6	3	25	7 5	100	4
	Elective II	6	3	25	75	100	4
0UDSMP601	Core Practical VIII: Python Programming	3	3	40	60	100	2
0UDSMP602	Core Practical IX: Computer Networking	3	3	40	60	100	2
OUDSPR601	Project Work	3	3	40	60	100	5

Mr. M. PRASAD, M.Sc., M.B.A.,
Controller of Exendent and
KS. Respassing College of Arts & Superior Reportment
Thyrothengode - 637 215. Terminado. Incl.

20UDSEL501	ELECTIVE I: SOCIAL MEDIA MINING	SEMESTER - V
------------	---------------------------------	--------------

COURSE OBJECTIVES:

The Course aims to

- Understand how accurately analyze voluminous complex data set in social media and other sources.
- Understand the models and algorithms to process large data sets.
- Understand social behavior and recommendation challenges and methodologies.

UNIT	CONTENTS	Hrs	CO
I	Social Media Mining - Introduction - Atoms - Molecules - Interactions - Social Media mining Challenges - Graphs - Basics - Nodes - Edges - Degree of Distribution - Types - Directed - Undirected - Weighted - Graph Connectivity - Tress and Forests - Bipartite graphs - Complete Graphs - Sub graphs - Planar Graphs - Graph Representation - Graph Traversal Algorithms - Shortest path algorithms Dijkstra"s - Spanning tree algorithms - Prims - Bipartite matching - Ford-Fulkerson algorithm.	10	CO1
П	Network Models - Measures - Node: Eigen Centrality - Page Rank - Group Measures - Betweenness centrality - group degree centrality, centrality, and group - Closeness centrality - Node Linking Behavior - Transitivity and reciprocity - Linking Analysis - Cluster coefficient - Jaccard - Case Study: Modeling small networks with real world model.	10	CO2
ш	Social media Communities - Social Communities - Member based Detection - Node degree - Node Similarity - Node reachability - Group Based detection methods - balanced -	10	CO3

Mr. M. PRAGAD, M.Sc. M.B.A., ...
Controller of Examinations
KS Rangasamy College of Arts & Science (Automoriz)
Timichengode - 637 215. Tamilhedu. India.

B.Sc., Computer Science - Data Science (Students admitted from 2020–2021 onwards)

	robust - modular - dense - hierarchical - Spectral Clustering: Balanced Community algorithm Community Evolution - Evaluation.	-	
IV	Social Network - Information Diffusion - Types - herd behavior - information cascades diffusion of innovation - epidemics - Diffusion Models Case Study - Herd Behavior - Information Cascades Methods - Social Similarity - assortativity - Social Forces - Influence homophily - Confounding - Assortativity measures - Influence measures - Predictive Models.	10	CO4
v	Recommendation Vs Search - Recommendation Challenges - Recommender algorithms - Content-Based Methods - Collaborative Filtering - Memory Based - Model Based - Social Media Recommendation - User friendship - Recommendation Evaluation - Precision - Recall - Behavioral - User Behavior - User - Community behavior - User Entity behavior - Behavioral Analytics - Methodology.	10	CO5
TEXT B	OOKS:		
1.	Reza Zafarani, Mohhammad AbiElasi. 2014. Social Media Min Introduction. Cambridge press.	ing: Ar	1
REFERI	ENCE BOOKS:		
1.	Memon, N., Xu, J.J., Hicks, D.L., Chen, H. (Eds.). Data Min Network Data.	ning fo	r Socia
WEB R	EFERENCES:	(A)	
1.	http://dmml.asu.edu/smm/chapter		
2.	http://learn.g2.com		

Mr. M. PRASAD, M.Sc. M.B. Controller of Examinations

KS. Rangasany College of Arts & Science (Automotive Tinuchengode - 637-215. Tamilinado. 41-52-

After completion of the course, the students will be able to:

CO1	Understand the concepts of Graph Models, social communities.
CO2	Understand the network models and measures to evaluate information.
СОЗ	Understand and apply algorithms to model data using graph and network structures and recommendations.
CO4	Apply algorithms on social data diffusion for various domains.
CO5	Distinguish and Suggest the appropriate algorithms for domain specific applications for data modeling.

MAPPING:

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	Н	Н
CO2	Н	M	M	Н	Н
CO3	Н	Н	М	Н	Н
CO4	Н	Н	M	Н	Н
CO5	Н	Н	М	Н	Н

H-High; M-Medium; L-Low

CONTROLLEGE OF ARTS 8 SOFACE IN CONTROLLEGE OF ARTS 8 SOFACE I

Mr. M. PRASAD, M.Sc., M.B.A., ...
Controller of Examinations
KS. Rangasony College of Arth & Science (Autonomous)
Tiruchengode - 637 215. Tamilinadu, Incila.

20UDSEL502

ELECTIVE I: NATURAL LANGUAGE PROCESSING

SEMESTER - V

COURSE OBJECTIVES:

The Course aims to

 Make students understand syntactic and semantic elements of natural language processing.

Conceive basics of knowledge representation and inference.

redit Po	ints: 4	Total	Hours: 5
UNIT	CONTENTS	Hrs	co
I	INTRODUCTION: Applications of NLP techniques and key issues - MT - grammar checkers - dictation - document generation - NL interfaces - Natural Language Processing key issues - The different analysis levels used for NLP: morpho-lexical - syntactic - semantic - pragmatic - markup (TEI, UNICODE) - finite state automata - Recursive and augmented transition networks - open problems.	10	C01
ш	LEXICAL LEVEL: Error-tolerant lexical processing (spelling error correction) - Transducers for the design of morphologic analyzers Features - Towards syntax: Part-of- speech tagging (Brill, HMM) - Efficient representations for linguistic resources (lexica, grammars,) tries and finite - state automata.	10	CO2
III	SYNTACTIC LEVEL: Grammars (e.g. Formal/Chomsky hierarchy, DCGs, systemic, case, unification, stochastic) - Parsing (top-down, bottom-up, chart (Earley algorithm), CYK algorithm) - Automated estimation of probabilistic model parameters (inside-outside algorithm) - Data Oriented Parsing - Grammar formalisms and treebanks -	10	C03

Mr. M. PRASAID, M.Sc. M.B.A.

Controller of Examinations

KS. Rangasamy College of Arts & Science (Astronomy Thruchengode - 637 215, Tamilinadu, M.A.)

	Efficient parsing for context-free grammars (CFGs) - Statistical parsing and probabilistic CFGs (PCFGs) - Lexicalized PCFGs.		
IV	SEMANTIC LEVEL: Logical forms - Ambiguity resolution - Semantic networks and parsers - Procedural semantics - Montague semantics - Vector Space approaches - Distributional Semantics - Lexical semantics and Word Sense Disambiguation - Compositional semantics. Semantic Role Labeling and Semantic parsing. PRAGMATIC LEVEL: Knowledge representation - Reasoning - Plan/goal recognition - speech acts/intentions - belief models - discourse - reference.	10	CO4
V	NATURAL LANGUAGE GENERATION: content determination - sentence planning - surface realization. SUBJECTIVITY AND SENTIMENT ANALYSIS: Information extraction - Automatic summarization Information retrieval and Question answering - Named entity recognition and relation extraction - IE using sequence labeling - Machine translation: Basic issues in MT - Statistical translation - word alignment - phrase-based translation and synchronous grammars.	10	CO5
ГЕХТ ВС	OOKS:		
1.	Daniel Jurafsky and James H. Martin. 2009. Speech and Langua Introduction to Natural Language Processing, Computation Speech Recognition. Prentice Hall.		
2.	Ian H. Witten and Eibe Frank, Mark A. Hall.2013. Data Mining Learning Tools and Techniques, Morgan Kaufmann.	: Practica	l Machine

Mr. M. PRASAD, M.Sc., M. J.A.
Controller of Extendio. 198
KS. Rangssemy College of Arts & Science (Approximation and Controllers) 245. Tamilinadu. Inc.).

B.Sc., Computer Science - Data Science (Students admitted from 2020–2021 onwards)

	Christopher Manning and Hinrid Chille 2000 F
1	Christopher Manning and Hinrich Schütze. 2008. Foundations of Statistical
1.	Natural Language Processing. MIT Press.
2.	James Allen.1995. Natural Language Understanding. Addison Wesley, 1995.
	Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
3.	with Python - Analyzing Text with the Natural Language Toolkit. O'Reilly
	Media, Sebastopol.

After completion of the course, the students will be able to:

C01	Understand the basics of natural language.	
CO2	Acquire knowledge about lexical level.	
CO3	Understand the concepts of syntactic level.	
CO4	Know the concepts of semantic and pragmatic level.	
CO5	Gain knowledge of sentiment analysis.	

MAPPING:

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	Н	M	М	Н	Н
CO2	Н	М	М	Н	Н
CO3	H	Н	M	Н	Н
CO4	Н	Н	М	Н	Н
CO5	Н	Н	M	Н	Н

H-High; M-Medium; L-Low

Mr. M. PRASAD, M.Sc., M.S.A. In.
Controller of Examinutions
KS. Rangasamy College of Arts & Idence (Autown thrushlengode - 637, 215, Tamilinadu, Inc.)

20UDSEL601 ELECTIVE II: ARTIFICIAL INTELLIGENCE
AND EXPERT SYSTEMS SEMESTER-VI

COURSE OBJECTIVES:

The Course aims to

- Demonstrate the knowledge of the building blocks of AI.
- · Analyze and formalize the problems.

Credit P	oints: 4	Total I	Hours: 50
UNIT	CONTENTS	Hrs	СО
Ĭ	Introduction to Artificial Intelligence: Introduction - Brief History - Intelligent Systems: ELIZA - Categorization of Intelligent Systems - Components of AI Program - Foundations of AI - Sub-areas of AI - Applications. Tic-Tac-Toe Game Playing: Approach1 - Approach2 - Approach3 - Development of AI Languages - Current Trends in AI. Problem Solving State-space Search and Control Strategies: Introduction - General Problem Solving: Production System - State-Space Search - Control Strategies.	10	CO1
II	Exhaustive Searches: Breadth-First Search - Depth-First Search - Depth-First Iterative Deepening - Bidirectional Search - Analysis of Search methods. Heuristic Search Techniques: General-Purpose Heuristic-Branch and Bound Search - Hill Climbing - Beam Search - A* Algorithm - Optimal Solution by A* Algorithm - Monotonic Function.	10	CO2
ш	Expert System and Applications: Introduction - Phases in Building Expert Systems: Knowledge Engineering - Knowledge Representation. Expert System Architecture: Knowledge Base - Inference Engine - Knowledge Acquisition - Case History -	10	CO3

Mr. M. PRASAD, M.Sc., M.B.A. M. et al.
Controller of Examinations

1.3. Rangesativ College of Arts. 1 Science (Automoral)

The remonder - 637, 216, Tan artiague, Inclusional)

	User Interfaces - Explanation Module - Special Interfaces. Expert Systems versus Traditional Systems: Characteristics of Expert Systems - Evaluation of Expert Systems - Advantages and disadvantages of Expert Systems - Languages for ES Development. Rule Based Expert Systems: Expert System Shell in Prolog - Problem-Independent Forward chaining - ES Shells and tools - MYCIN Expert System and various Shells - Applications of Expert Systems.		
IV	Machine-Learning Paradigms: Introduction - Machine-Learning Systems: Components of a Learning System - Rote Learning - Learning by Taking Advice - Learning by parameter Adjustment - Learning by Macro-Operators - Learning by Analogy. Supervised and Unsupervised Learnings: Neural Network Based Learning - Supervised Concept Learning - Probability	10	CO4
V	Approximating Correct Learning - Unsupervised Learning - Reinforcement Learning. Artificial Neural Networks: Introduction - Artificial Neural Networks: The Neuron Networks - The Neuron Model - Activation Functions - Neural Network Architectures. Single-Layer Feed - Forward Networks: Perceptron: Neuron Model - Learning Algorithm for Perceptron - Perceptron for OR Function: Example - Limitations of Perceptron. Multi-Layer Feed - Forward Networks: Back-Propagation Training Algorithm for FFNN - Weight Update Rule - Delta Rule (Least Mean Square) for Error Minimization.	10	COS

Mr. M. PRASAD, M.Sc., M.B.A., M.
Controller of Examinutions
ICS Rangesmy College of Arts 2 Science (Automotive Charles)
Tinichengode - 637 215. Tamilnadu.

TEXTB	OOKS:		
1	SarojKaushik. 2014. Artificial Intelligence. [Sixth Edition]. Cengage Learning India Pvt. Ltd.		
REFER	ENCE BOOKS:		
1	Dan W.patterson. 1992. Introduction to Artificial Intelligence and Expert Systems. Prentice Hall of India, New Delhi.		
2	SturatJ.Rusell and Peter Norvig.2010. Artificial Intelligence. Prentice.		
3	Elaine Rich, Kevin Knight, B, Nair. 2010. Artificial Intelligence: A Modern Approach. [Third Edition]. Prentice Hall of India, New Delhi.		
WEB R	EFERENCES:		
1	https://www.tutorialspoint.com		
2	http://www.epub.uni-regensburg.de.pdf		
3	http://www.investopedia.com		
4	https://www.sas.com		

After completion of the course, the students will be able to:

CO1	Acquire the basics of AI.
CO2	Analyze and formalize the problem as a state space, design and heuristics.
CO3	Attain the capability to various expert system methods.
CO4	Characterize machine learning algorithms as supervised, semi-supervised, and unsupervised.
CO5	Understand the concepts of Artificial Neural Networks.

Mr. M. PRASAD, U.Sc., M.B.A., MAY...
Controller of Exemplements
V.S. Panasami College of the Listian Planasami
Pinionengoda - 637 215. Parallala...

MAPPING:

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M	Н	Н	M	H
CO2	Н	Н	Н	Н .	Н
CO3	М	H	M	Н	Н
CO4	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Mr. M. PRASAD, M.Sc., M. A. A. A. Printer Controller of Examinations

KS. Rangasamy College of Arts & Science (Automobile)

Firstchengode - 637 215. Familinado:

COLUDCEL COO	ELECTIVE II: INFORMATION RETRIEVAL	SEMESTER - VI
20UDSEL602	TECHNIQUES	SEVIESTER - VI

COURSE OBJECTIVES:

The Course aims to

- Learn the information retrieval models.
- Familiarize with Web Search Engine.

redit Poi	nts: 4	Total H	lours: 50
UNIT	CONTENTS	Hrs	CO
I	INTRODUCTION Introduction - History of IR - Components of IR - Issues - Open source Search engine Frameworks - The impact of the web on IR - The role of artificial intelligence (AI) in IR - IR Versus Web Search - Components of a Search engine - Characterizing the web.	10	CO1
п	INFORMATION RETRIEVAL Boolean and vector - space retrieval models - Term weighting - TF-IDF weighting - cosine similarity - Preprocessing - Inverted indices - efficient processing with sparse vectors - Language Model based IR - Probabilistic IR - Latent Semantic Indexing - Relevance feedback and query expansion.	10	CO2
Ш	WEB SEARCH ENGINE - INTRODUCTION AND CRAWLING Web search overview, web structure, the user, paid placement, search engine optimization/ spam. Web size measurement - search engine optimization/spam - Web Search Architectures - crawling - meta-crawlers - Focused Crawling - web indexes - Near-duplicate detection - Index Compression - XML retrieval.	10	CO3
IV	WEB SEARCH - LINK ANALYSIS AND SPECIALIZED SEARCH		

Mr. M. PRASAD, M.Sc., M.Sc., Controller of Examinations
K.S. Rengasamy College of Arts & Science (August Tiruchengodo - 637 215, Tamilnadu, Inc.).

	Link Analysis - hubs and authorities - Page Rank and				
	HITS algorithms - Searching and Ranking - Relevance		CO4		
	Scoring and ranking for Web - Similarity - Hadoop &				
	Map Reduce - Evaluation -	40			
	Personalized search - Collaborative filtering and content	10			
	- based recommendation of documents and products -				
	handling "invisible" Web - Snippet generation,				
	Summarization, Question Answering, Cross - Lingual				
	Retrieval.				
	DOCUMENT TEXT MINING				
	Information filtering; organization and relevance				
	feedback - Text Mining - Text classification and				
V	clustering - Categorization algorithms: naive Bayes;	10	COS		
	decision trees; and nearest neighbor -				
	Clustering algorithms: agglomerative clustering; k-				
	means; expectation maximization (EM).				
XT BO	OKS:				
1.	C. Manning, P. Raghavan, and H. Schütze, Introduction to In	formation			
1.	Retrieval, Cambridge University Press, 2008.				
	Ricardo Baeza - Yates and Berthier Ribeiro - Neto, Modern Infor	mation Ret	rieval:		
2.	The Concepts and Technology behind Search 2 nd Edition, ACM Press Books				
	2011.				
2	Bruce Croft, Donald Metzler and Trevor Strohman, Search Engines: Information				
3.	Retrieval in Practice, 1 st Edition Addison Wesley, 2009.				
4.	Mark Levene, An Introduction to Search Engines and W	eb Naviga	tion, 2n		

Mr. M. PRASAD, M.Sc., mass.

Controller of Examinations

KS. Rangesamy College of Arts & Science (Autonomic)

Tiruchengode - 637 215. Tamilnadu. Incl.

B.Sc., Computer Science-Data Science (Students admitted from 2020–2021 onwards)

REFEREN	NCE BOOKS:
1.	Stefan Buettcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.
2.	OphirFrieder "Information Retrieval: Algorithms and Heuristics: The Information Retrieval Series", 2 nd Edition, Springer, 2004.
3.	Manu Konchady, "Building Search Applications: Lucene, Ling Pipe", and First Edition, Gate Mustru Publishing, 2008.
WEB REI	FERENCES:
1.	https://www.springer.com
2.	https://www.tutorialspoint.com
3.	http://www.scholarpedia.org

After completion of the course, the students will be able to:

CO1	Differentiate between supervised, unsupervised, semi-supervised machine learning approaches
CO2	Discuss the decision tree algorithm and identity and overcome the problem of over fitting.
CO3	Discuss and apply the back propagation algorithm and genetic algorithms to various problems
CO4	Apply the Bayesian concepts to machine learning
CO5	Analyze and suggest appropriate machine learning approaches for various types of problems

Mr. M. PRASAD, M.Sc., M.B.A., M.J. of Controller of Examinations
K.S. Rangasamy College of Arts & Science (Autonomors)
Tiruchengode - 637 215. Tamilnadu. Incia.

MAPPING:

PSO/CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	H	H
CO2	Н	М	М	H	Н
CO3	Н	Н	М	Н	Н
CO4	Н	Н	М	Н	Н
CO5	Н	H	М	Н	Н

H-High; M-Medium; L-Low

CONTROLLER
OF
EXAMERATIONS

THOUSENCES OF SPTS - SCIENCE OF SPTS -

Mr. M. PRASAD, M.Sc., M.B.A., M.J.,
Controller of Examinations
K.S. Rangasamy College of Arts & Science (Autonomous)
Tiruchengode - 637 215. Tarmilnady, Incl.