

K.S. Rangasamy College of Arts and Science (Autonomous)

NAAC Re-accredited and an ISO 9001: 2008 Certified Institution (Affiliated to Periyar University, Salem. Included under 2(f) & 12(B) of UGC Act, 1956) Tiruchengode - 637 215

SYLLABUS FOR B.Sc. MATHEMATICS

(2018 -21 Batch onwards)

B.Sc., Mathematics (Students admitted from 2018 – 2019 Onwards) BACHELOR OF SCIENCE (MATHEMATICS)

VISION

To be a global center of excellence in Mathematics for the growth of Science and Technology.

MISSION

- To provide quality education and research in Mathematics through updated curriculum and effective teaching learning process.
- To inculcate innovative skills, team work and ethical practices among students so as to meet societal expectations.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO 1:** To provide a degree course, suitable for students of high ability by combining and relating Mathematics, Statistics and the Social Sciences.
- **PEO 2:** To prepare students for further study or for professional and managerial careers, particularly in areas requiring the applications of quantitative skills.
- **PEO 3:** To develop their positive attitude, skills which will enable them to become a multi facet personality shining in any chosen field.

PROGRAMME OUTCOMES (PO)

After completion of the programme, the graduates will be able to

- **PO 1:** Think in a critical manner and recognize when there is a need for information and use that information for solving problems effectively.
- PO 2: Formulate and develop Mathematical arguments in a logical manner.
- **PO 3:** Attain good knowledge and understanding in advanced areas of Mathematics and Statistics, chosen by the students from the given courses and acquires the ability to think independently paving way for life long learning.
- **PO 4:** Understand and formulate and use quantitative models arising in social science, business and other contexts.
- **PO 5:** Apply the concepts to design a Mathematical model and to solve the real life problems involving the concepts studied in Applied Mathematics.

2

PROGRAMME SPECIFIC OUTCOMES (PSO)

After completion of the programme, the graduates will be able to

- **PSO 1:** Acquire the knowledge and sound understanding on fundamentals of mathematical concepts including quantity, structure, space and change.
- **PSO 2:** Analyze the basic concepts of advanced Mathematics.
- **PSO 3:** Comprehend a range of general skills, to solve problems, to evaluate information using computers to develop software programming and to communicate with society effectively and learn independently.
- **PSO 4:** Possess the effective skills to analyze problems in diverse fields such as Science and Engineering, Education, Banking, Public services, Business etc.
- **PSO 5:** Develop the Analytical, Numerical and Mathematical skills to create Mathematical Models and improve the problem solving skills to find the solution to the real life problems.

REGULATIONS

ELIGIBILITY

Candidates seeking the admission to the first year of the Bachelor of Science (Mathematics) full-time degree programme shall be required to possess a Bachelor's Degree of any Recognized University.

DURATION OF THE COURSE

The programme shall extend a three academic years consisting of six semesters. Each academic year will be divided into two semesters.

MAXIMUM DURATION FOR THE COMPLETION OF THE PROGRAMME

The maximum duration for completion of the UG Programme shall not exceed 12 semesters.

SCHEME OF EXAMINATION

		Hours	Exam	Max. Marks			Cradit
Subject Code	Subject	Instruct ion	Durat ion	CA	CE	Total	Points
First Semester							
	Part I						
18UTALA101/	Tamil I/	5	3	25	75	100	3
18UHILA101/	Hindi I/						
18UFRLA101	French I						
	Part II						
18UENLA101	Foundation English - I	5	3	25	75	100	3
	Part III						
18UMAM101	Core I : Classical Algebra	6	3	25	75	100	4
18UMAM102	Core II : Differential Calculus	5	3	25	75	100	4
18UPHMAA101	Allied I : Physics I	4	3	25	75	100	2
18UPHMAAP101	Allied Practical I : Physics I	3	3	40	60	100	2
	Part IV						
18UVE101	Value Education I : Yoga	2	3	25	75	100	2
	30				700	20	
Second Semester							
	Part I						
18UTALA201/	Tamil II/						
18UHILA201/	Hindi II/	5	3	25	75	100	3
18UFRLA201	French II						
	Part II						
18UENLA201	Foundation English - II	5	3	25	75	100	3
	Part III						
18UMAM201	Core III: Integral Calculus	6	3	25	75	100	4
18UMAM202	Core IV: Differential Equations and Laplace Transforms	5	3	25	75	100	4
18UPHMAA201	Allied II: Physics II	4	3	25	75	100	2
18UPHMAAP201	Allied Practical II:	3	3	40	60	100	2
	Physics II	U	U		00	100	
	Part IV						
18UVE201	Value Education II :	2	3	2	75	100	2
	Environmental Studies			5			
Total		30				700	20

Third Semester							
	Part I						
18UTALA301/	Tamil III/						
18UHILA301 /	Hindi III/	5	3	25	75	100	3
18UFRLA301	French III						
	Part II		T	T	I	11	
18UENLA301	Foundation English- III	5	3	25	75	100	3
	Part III		T	T	I	11	
18UMAM301	Core V: Analytical Geometry of 2D and 3D	5	3	25	75	100	4
18UMAM302	Core VI: Statics and Dynamics	5	3	25	75	100	4
18UMAA301	Allied III : Mathematical Statistics I	3	3	25	75	100	2
18UMAAP301	Allied Practical III: Statistical Package	2	3	40	60	100	2
	(Ms-Excel)						
	Part IV		1		1		
18UMASB301	SBC I: Quantitative Aptitude – 100%	2	3	100	-	100	2
	Internal Evaluation						
18UMANM301	NMEC I	2	3	25	75	100	2
	Non Credit		1	T			
18ULS301	Career Competency Skills I	1	-	-	-	-	-
	Add-on Course *	-	-	-	-	-	-
	Total	30				800	22
Fourth Semester							
	Part I						
18UTALA401/	Tamil IV/						
18UHILA401 /	Hindi IV/	5	3	25	75	100	3
18UFRLA401	French IV						
	Part II			-			
18UENLA401	Foundation English -IV	5	3	25	75	100	3
	Part III			-			
18UMAM401	Core VII: Applications of integration and Vector Calculus	5	3	25	75	100	4
18UMAM402	Core VIII: Sequences and Series	5	3	25	75	100	4
18UMAA401	Allied IV: Mathematical Statistics II	3	3	25	75	100	2
18UMAAP401	Allied Practical IV: Statistical Software	2	3	40	60	100	2
	(SPSS)						
	Part IV						
18UMASB401	SBC II : Statistics for Competitive Exams -	2	3	100	-	100	2
	100% Internal Evaluation						
18UMANM401	NMEC II	2	3	25	75	100	2
	Non Credit						
18ULS401	Career Competency Skills II	1	-	-	-	-	-
	Add-on Course *	-	-	-	-	-	-
	Total	30				800	22

AND SCIENC

Fifth Semester							
	Part	III					
18UMAM501	Core IX: Abstract Algebra	6	3	25	75	100	5
18UMAM502	Core X: Real Analysis I	6	3	25	75	100	5
18UMAM503	Core XI: Operations Research	6	3	25	75	100	5
18UMAM504	Core XII: Programming in C	3	3	25	75	100	3
	Elective I	4	3	25	75	100	4
18UMAMP501	Core Practical I:	2	3	40	60	100	r
	Programming in C	۷	5	40	00	100	2
	Part	IV	1	1	1		
	SBC III: Mathematics for						
18UMASB501	Competitive Exams– I (100%	2	3	100	-	100	2
	Internal Evaluation)	* 7					
	Part	V					2
18UMAE501	Extension Activity	-					2
		realt	[
18ULS501	Career Competency Skills III	1	-	-	-	-	-
	Total	30				700	28
Sixth Semester							
Part III							
18UMAM601	Core XIII: Linear Algebra	5	3	25	75	100	5
	(Fifth Unit as Self-Study)		0	20	10	100	0
18UMAM602	Core XIV: Real Analysis II	6	3	25	75	100	5
18UMAM603	Core XV: Complex Analysis	5	3	25	75	100	5
18UMAM604	Core XVI: Numerical	5	3	25	75	100	5
	Methods						
	Elective II	4	3	25	75	100	4
18UMAMP601	Core Practical II: Sci Lab	2	3	40	60	100	2
Part IV							
	SBC IV: Mathematics for						
18UMASB601	Competitive Exams- II (100%	2	3	-	100	100	2
	Internal Evaluation)						
Non Credit							
18ULS601	Career Competency Skills IV	1	-	-	-	-	-
		30				700	28
	1	L	(Grand	Total	4400	140

ELECTIVE -I

(Student shall select any one of the following subject as Elective in fifth semester)

S.No	Subject Code	Name of the Subject
1.	18UMAEL501	Discrete Mathematics
2.	18UMAEL502	Graph Theory

ELECTIVE - II

(Student shall select any one of the following subject as Elective in sixth semester)

S.No	Subject Code	Name of the Subject
1.	18UMAEL601	Number Theory
2.	18UMAEL602	Optimization Techniques

NON MAJOR ELECTIVE COURSE

The department offering the following Non Major Elective Course for other than Mathematics students.

S.No	Subject Code	Name of the Subject
1	18UMANM301	Quantitative Aptitude.
2	18UMANM401	Basic Statistics.

ADD-ON COURSE

If Students want to get a Degree with additional skills, they can do Add-on Courses offered by the Department. The Add-on Courses offered by the Department are listed below.

S.No	Subject Code	Name of the Subject
1	18UMAAC301	Data Analysis Using R-Software.
2	18UMAAC401	Numerical Computations Using MatLab.

ADVANCED LEARNERS COURSE (ALC)

ALC to be introduced in the 4th and 5th semester.

If Students want to get a Degree with additional credits, they can do Advanced Learners Courses offered by the Department. The available advanced learners courses are listed below.

S.No	Subject Code	Name of the Subject
1	18UMAAL401	Index Numbers & Time Series Analysis.
2	18UMAAL402	Theory of Numbers & Inequalities.
3	18UMAAL501	Astronomy
4	18UMAAL502	Mathematical Modeling

Subjects	Total	Credits
Part – I Tamil	$4 \times 100 = 400$	12
Part – II English	$4 \times 100 = 400$	12
Part – III Core	16 X 100 = 1600	70
Part – III Elective	2X100 = 200	08
Part – III Core Practical	$2 \times 100 = 200$	04
Part – III Allied	$4 \times 100 = 400$	08
Part – III Allied Practical	$4 \times 100 = 400$	08
Part - IV NMEC	2X100 = 200	04
Part - IV SBC	4X100 = 400	08
Part – IV Other Courses	$1 \times 100 = 100$	02
(YOGA, EVS)	$1 \times 100 = 100$	02
Part – V Extension Activity		02
Total	4400	140

TOTAL CREDIT DISTRIBUTION

18UMA	EL501	ELECTIVE I: DISCRETE MATHEMATICS SE	MEST	ER V
COURSE	OBJECT	TIVES		
The course	e aims			
• To	introdu	ce the concepts of mathematical logic.		
• To	learn ab	out the algebraic structures, lattices and Boolean algebra	a.	
• To	provide	a sound knowledge of graphs and digraphs.		
Credits: ()4	Το	al Hou	ırs: 50
UNIT		CONTENTS	Hrs	CO
I	Mather Introdu Connec formula Tautolo Tautolo Chapte	natical Logic: action: Statements and Notation. actives: Negation- Conjunction - Disjunction -Statement as and Truth tables – Well-formed Formulas - ogies – Equivalence of Formulas – Duality Law - ogical Implications. r I (Sections 1-1, 1-2.1 to 1-2.4, 1-2.7 to 1-2.11)	10	CO1
II	Norma Norma Princip Chapte	I Forms: Disjunctive Normal Forms - Conjunctive I Forms - Principal Disjunctive Normal Forms - al Conjunctive Normal Forms. r - 1 (Sections 1-3.1 to 1-3.4)	10	CO2
III	Relation relation Function function Chapte	ns and Orderings: Relations – Properties of Binary as in a set- Equivalence relations. ons: Definition and Introduction – Composition of ans – Inverse functions. r – 2 (Sections 2-3.1,2-3.2, 2-3.5, 2-4.1 to 2-4.3)	10	CO3
IV	Lattices Introdu propert Lattices Lattices Chapte	5: action: Lattices as Partially Ordered Sets – Some ties of Lattices – Lattices as Algebraic systems- Sub 5, Direct product, and Homomorphism – Some special 5. r – 4 (Sections 4-1.1 to 4-1.5)	10	CO4
V	Boolean Definiti Homon Boolean - Value Chapte	n Algebra: Ion and Examples - Subalgebra, Direct Product and norphism. n Functions: Boolean Forms and Free Boolean Algebras of Boolean Expressions and Boolean Functions. r - 4 (Sections 4-2.1 to 4-2.2, 4-3.1 to 4-3.2)	10	CO5
TEXT BC	OOK			
1.	Trembla Applica	y, J.P., Manohar.R., 2015. Discrete Mathematical Strations to Computer Science, Tata McGraw-Hill Compa	r ucture ny, Ne	s with w Delhi

REFEREN	NCE BOOKSVlathematics (Students admitted from 2018 – 2019 Onwards)
1.	Venkataraman, M.K., Sridharan, N. and Chandrasekaran, N. 2001. Discrete
	Mathematics. The National Publishing Company, Chennai.
2.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2006. Discrete
	Mathematics. Tata Mc Graw Hill, New Delhi.
3	Somasundaram, R.M. 2003. Discrete Mathematical structures. Prentice Hall of
3.	India Pvt. Ltd., New Delhi.

After completion of the course, the students will be able to

CO1	Understand the concepts of mathematical logic such as negation, conjunction,
	disjunction and formulate truth table.
CO2	Describe the principle of conjunctive normal form and disjunctive normal
	form.
CO3	Discuss about relation, function and its properties.
CO4	Acquire knowledge about lattices, homomorphism and its properties.
CO5	Compute Boolean algebra and Boolean function.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	Н
CO2	Н	М	М	Н	Н
CO3	Н	Н	Н	М	М
CO4	Н	М	М	М	М
CO5	Н	Н	М	L	М

H-High; M-Medium; L-Low

18	UM	[A]	EL5	502
18	UM	[A]	EL5	502

ELECTIVE I: GRAPH THEORY

COURSE OBJECTIVES

The course aims

- To introduce the concepts of graphs.
- To learn about various types of graphs.
- To provide a sound knowledge on Trees and Digraphs.

Credits: 04 Total Hours: 50			
UNIT	CONTENTS	Hrs	CO
I	Introduction – Definitions and examples – Degrees – Sub graphs – Isomorphism – Independent sets and Coverings – Matrices – Operations on Graphs. Chapter 2 (Sections 2.0 – 2.4, 2.6, 2.8 and 2.9)	10	CO1
II	Introduction – Walks, Trails and Paths – Connectedness and Components – Blocks – Connectivity. Chapter 4 (Sections 4.0 – 4.4)	10	CO2
III	Introduction – Eulerian Graphs – Konigsberg Bridge Problem – Hamiltonian Graphs. Chapter 5 (Sections 5.0 – 5.2)	10	CO3
IV	Introduction – Characterization of Trees – Centre of a Tree. Chapter 6 (Sections 6.0 – 6.2)		CO4
v	Introduction – Definitions and Basic properties – Paths and Connections - Digraphs and Matrices - Tournament. Chapter 10 (Sections 10.0 – 10.4)	10	CO5

TEXT B	OOK
1.	Arumugam, S. and Ramachandran, S. 2001. Invitation to Graph Theory. Scitech
	Publications, Chennai.
REFERE	INCE BOOKS
1	Parthasarathy, K.R. 2001. Basics of Graph Theory. TMH Publishing Company,
1.	Ltd., NewDelhi.
2.	Kumaravelu, S. and Suseela Kumaravelu. 1996. Graph Theory. SKV Printers.
3.	Chodowm, S.A. 1997. A First Course in Graph Theory. Macmillan Publishers,
	Chennai.

After completion of the course, the students will be able to

CO1	Understand the concepts of graph, sub graph and covering.
CO2	Compute walk, trail, path and connectivity.
CO3	Discuss about Eulerian graph and its theorem.
CO4	Understand the concepts of characterization of tree.
CO5	Describe about digraph, matrices and tournament.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	Н
CO2	Н	М	М	Н	Н
CO3	Н	Н	Н	М	М
CO4	Н	М	М	М	М
CO5	Н	Н	М	L	М

H-High; M-Medium; L-Low

18UMA	EL601 ELECTIV	VE II: NUMBER THEORY	SEN	IESTE	ER VI
COURSE OBJECTIVES					
The course aims					
• In	roduction to elementary	concepts of number theory.			
• To	learn about quadratic re	eciprocity and some functions in n	umber	theory	7.
• To	provide the knowledge	about Diophantine equations.			
Credits: (4		To	tal Ho	ours: 50
UNIT		CONTENTS		Hrs	CO
	Divisibility: Introducti	on - Divisibility - Primes.			
Ι	Congruences: Congrue	nces - Solutions of Congruences.		10	CO1
	Chapter 1 (Sections 1.2	, 1.3) Chapter 2 (Sections 2.1, 2.2)			
	Congruences: Prime	power moduli - Prime modu	lus –		
п	Primitive roots and Power Residues – Congruences of degree				cor
	two, Prime Modulus.			10	02
	Chapter 2 (Sections 2.6	- 2.9)			
	Quadratic Reciprocit	y: Quadratic residues – Qua	dratic		
	Reciprocity – The Jacob	i symbol.			
III	Some Functions of	Number Theory: Greatest In	nteger	10	CO3
	Function.				
	Chapter 3 (Sections 3.1	- 3.3) Chapter 4 (Section 4.1)			
	Some Functions of N	umber Theory: Arithmetic function	ions –		
IV	The Mobius inverse for	mula – Recurrence functions.		10	CO4
	Chapter 4 (Sections 4.2	4.4)			
	Some Diaphantine I	E quations: The equation ax+by	/=c -		
v	Simultaneous linear	equations – Pythagorean triang	gles –	10	CO5
	Assorted examples.				
	Chapter 5 (Sections 5.1	- 5.4)			

TEXT BOOK

1.	Ivan Niven, Zuckerman, H.S and Montgomery, H.L. 2014. An Introduction to the
	Theory of Numbers. [Fifth Edition]. Wiley Eastern Ltd., New Delhi.
REFERE	INCE BOOKS
1.	Burton, D.M. 2001. Elementary Number Theory. [Ninth Edition]. Universal
2.	Book Stall, New Delhi. <i>Tom. M. Apostal.</i> 1998. Introduction to Analytic Number Theory. [Eighth Edition] Narosa Publication House. Channel
	Euronj. Marosa i ublication i louse, Chennal.
13	K.S. RANGASAMY COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS), TIRUCHENGODE

After completion of the course, the students will be able to

CO1	Understand the concepts of divisibility and congruence.
CO2	Solve the problems involving the concept of primitive roots and power
	residue.
CO3	Analyze Quadratic residues and reciprocity .
CO4	Understand the concepts of arithmetic functions and recurrence function.
CO5	Apply the concepts of simultaneous linear equation.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	Н
CO2	Н	М	М	Н	Н
CO3	Н	Н	Н	М	М
CO4	Н	М	М	М	М
CO5	Н	Н	М	L	М

H-High; M-Medium; L-Low

18UMAEL602 ELECTIVE II: OPTIMIZATION TECHNIQUES SEMESTER VI B.Sc., Mathematics (Students admitted from 2018 – 2019 Onwards)

COURSE OBJECTIVES

The course aims

- To formulate and solve problems as networks and graphs.
- To learn the techniques for converting the industrial problems as mathematical problems and solving them.

Credits: 05

Total Hours: 60

UNIT	CONTENTS	Hrs	СО
	Inventory control – Introduction - Types of inventory – EOQ – Deterministic inventory problem – EOO problem with price-	10	601
1	Break. Chapter 19 (Sections 19.1 - 19.12)	12	COI
	Quanting Theory Introduction Characteristics of Quanting		
	Queung Theory -Introduction - Characteristics of Queung		
п	System - Classification of Queues - Poisson process and	12	CO^{2}
	Exponential distribution – Poisson queueing system – The	14	02
	M/G/I queuing system.		
	Chapter 21 (Sections 21.1 - 21.9)		
	Replacement problems and system reliability – Introduction -		
тт	Replacement of equipment that fails suddenly – Recruitment	10	CO3
111	and promotion problem – Equipment renewal problem –	12	
	Reliability and system failure rates.		
	Chapter 18 (Sections 18.1 - 18.6)		
	Games and Strategies - Introduction - Two person zero sum		
TT 7	game - The maximum and minimum principle games - Games	10	604
IV	without saddle points - Mixed strategies - Graphical method -	12	CO4
	Dominance Property.		
	Chapter 17 (Sections 17.1 - 17.7)		
	Sequencing problem – Introduction – n jobs to be operated on		
	two machines - Problems - n jobs to be operated on three		
v	machines - Problems - n jobs to be operated on m machines -	12	CO5
	Problems - Two jobs to be operated on m machines (Graphical		
	method) – Problems.		
	Chapter 12 (Sections 12.1 - 12.6)		
TEXT BC	OOK		
1.	Kanti swarup., Gupta, P.K. and Man Mohan. 2014. Operatio	ns Re	esearch.
	[Seventeenth Edition]. Sultan Chand and Sons, New Delhi.		

REFEREN	REFERENCE BOOKS B Sc. Mathematics (Students admitted from 2018 - 2019 Onwards)			
1	Gupta, P.K. and Hira, D.S. 2004. Operations Research. [Eighth Edition].			
1.	S.Chand and Company, New Delhi.			
2	Hamdy A Taha. 1996. Operations Research. [Eighth Edition]. Prentice Hall			
۷.	Publications, New Delhi.			
3.	Kantiswarup., Gupta, P.K. and Man Mohan. 2001. Operations Research. [Ninth			
	Edition]. Sultan Chand and Sons, New Delhi.			

After completion of the course, the students will be able to

CO1	Understand the concepts of inventory control				
CO2	Analyze queuing theory and poisson process.				
CO3	Finding recruitment and promotion problems				
CO4	Discuss game, strategies on dominance property.				
CO5	Compute sequencing problems using graphical method.				

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	Н
CO2	Н	М	М	Н	Н
CO3	Н	Н	Н	М	М
CO4	Н	М	М	М	М
CO5	Н	Н	М	L	М

H-High; M-Medium; L-Low

Mr. M. PRASAD, M.Sc., M.B.A., MPTIL. Controller of Examinations KS. Regateny College of Arts & Science (Autorometal) Terrothengode - 637 215. Tamilinadu, India.

