MASTER OF SCIENCE (CHEMISTRY)

VISION

To boldly explore and advance new chemicals frontiers in life sciences, physical sciences, medicine, energy, materials and environment sciences through visionary research and innovation.

MISSION

- To promote innovative inter-disciplinary thinking by providing educational and research opportunities between chemistry and other fields of study.
- To create a knowledge platform that supports an invent and design culture that empowers students to address and meet the challenges of global significance.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO 1:** To understand theoretical concepts of chemical sciences as well as to interpret the data generated in instrumental chemical analyses.
- **PEO 2:** To develop a sustainable career in their area of interest that enhances domain knowledge throughout their working endeavors.
- **PEO 3:** To demonstrate leadership and to facilitate ethically advanced professionals in culture and interdisciplinary backgrounds.

PROGRAMME OUTCOMES (PO)

After completion of the programme, the graduates will be able to

- **PO1:** Know the background of organic reaction mechanisms, complex chemical structures, and instrumental method of chemical analysis, molecular rearrangements and separation techniques.
- **PO2:** Appreciate the importance of various elements present in the periodic table, coordination chemistry and structure of molecules using theories and instruments.
- **PO3:** Gather attention about the physical aspects of atomic structure, dual behavior, and reaction pathways with respect to time.

PO4: Apply the potential uses of analytical, industrial, medicinal and green chemistry.

PO5: Carry out experiments in the area of organic, inorganic and physical fields with better analytical perception.

PROGRAMME SPECIFIC OUTCOME (PSO)

After completion of the programme, the graduates will be able to

- **PSO 1**: Apply the domain knowledge to appreciate the theoretical aspects for applications in energy, environment, materials and medicine.
- **PSO 2**: Utilize the contextual knowledge of chemistry to function effectively as an individual as well as a leader in multidisciplinary environments.
- **PSO 3**: Pursue legal research and utilize domain knowledge persuasively to resolve complex problems and develop resolution skills in various environments.
- **PSO 4**: Cogent a research oriented learning that develops analytical and integrative cognition.
- **PSO 5**: Gain specialized knowledge and practical training to address contemporary problems in academia and industry considering the societal needs for sustainability.

REGULATIONS

ELIGIBILITY

A candidate who has passed B.Sc., Degree Examination with Branch IV Chemistry as main subject of study of this university or any of the B.Sc., degree examination with specialization such as Industrial chemistry, Polymer Chemistry, Applied Chemistry, Pharmaceutical Chemistry or any other specialization in Chemistry of some other University accepted by the syndicate as equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the M.Sc., degree in Chemistry after a course of study of two academic years.

DURATION OF THE PROGRAMME

The course shall extend over a period of two years comprising of four semesters with two semesters in one academic year. There shall not be less than 90 working days for each semester. Examination shall be conducted at the end of every semester for the respective subjects.

MAXIMUM DURATION FOR THE COMPLETION OF THE PG PROGRAMME

The maximum duration for completion of the PG Programme shall not exceed 8 semesters.

M.Sc., SCHEME OF EXAMINATION

		Hours	Exam	N	Max Ma	rks		
Subject Code	Subject	of Instruc tion (Hours)		CA	CE	Total	Credit Points	
	FIRST S	EMESTE	R					
	Part A							
18PCHM101	Core I: Organic Chemistry I	5	3	25	75	100	5	
18PCHM102	Core II: Inorganic Chemistry I	5	3	25	75	100	5	
18PCHM103	Core III: Physical Chemistry I	5	3	25	75	100	4	
18PCHM104	Core IV: Spectroscopy	4	3	25	75	100	4	
18PCHMP101 Core Practical I: Organic Practical I		5	6	40	60	100	3	
18PCHMP102Core Practical II: Inorganic Practical I		5	6	40	60	100	3	
	Non	Credit						
18PLS101	Career Competency Skills I	1	-	-	-	-	-	
Total 30					600	24		
	SECOND SEMESTER							
	Pa	art A				-		
18PCHM201	Core V: Organic Chemistry II	5	3	25	75	100	5	
18PCHM202	Core VI: Inorganic Chemistry II	5	3	25	75	100	5	
18PCHM203	Core VII: Physical Chemistry II	4	3	25	75	100	4	
	Elective I	4	3	25	75	100	4	
18PCHMP201Core Practical III: Organic Practical II		5	6	40	60	100	3	
18PCHMP202	Core Practical IV: Physical Practical I	4	6	40	60	100	3	

Part B								
18PVE201	Value Education: Human Rights	2	3	25	75	100	2	
	Non	-Credit						
18PLS201	Career Competency Skills II	1	-	-	-			
	Total	30				700	26	
	THIRD S	SEMESTI	ER					
	PAI	RT – A						
18PCHM301	Core VIII: Organic Chemistry III	6	3	25	75	100	5	
18PCHM302	Core IX: Inorganic Chemistry III	6	3	25	75	100	5	
	Elective II	4	3	25	75	100	4	
18PCHMP301	Core Practical V: Inorganic Practical II	5	6	40	60	100	3	
18PCHMP302	Core Practical VI: Physical Practical II	5	6	40	60	100	3	
18PPHCHI301	IDC I: Solid State Physics	4	3	25	75	100	4	
	Total	30				600	24	
	FOURTH	SEMEST	ER					
	PAI	RT – A						
18PCHM401	Core X: Analytical Chemistry	5	3	25	75	100	5	
18PCHM402	Core XI: Physical Chemistry III	5	3	25	75	100	5	
18PCHPR401	Project & Viva –Voce	5	-	50	150	200	6	
	Total	15				400	16	
		1	1	Grand	Total	2300	90	

Elective I

The department offers the following three subjects as elective courses for second semester

Paper code	Semester	Paper name	
18PCHEL201	II	Elective I: Polymer Chemistry I	
18PCHEL202	II	Elective I: Bio-inorganic chemistry I	
18PCHEI 203	П	Elective I:Principles and applications of	
	11	drug design and discovery	

Elective II

The department offers the following three subjects as elective courses for third semester

Paper code	Semester	Paper name
18PCHEL301	III	Elective II: Photochemistry
18PCHEL302	III	Elective II: Bio-inorganic chemistry II
18PCHEL303	III	Elective II: Polymer Chemistry II

For course completion:

- Students shall opt two Elective subjects.
- Students shall opt one IDC in third semester.
 - Students shall complete one Value Education in Second Semester.

Subject	Total M	Credits		
	Part A			
Core Subjects	6×100	600	8×5=40	
Core Subjects	5×100	500	3×4=12	
Elective Subjects	2×100	200	2×4=08	
Core Practicals	6×100	600	6×3=18	
Inter Disciplinary Course	1×100	100	1×4=04	
Project & Viva-Voce	1×200	200	1×6=06	
Part B				
Value Education: Human Rights	1×100	100	1×2=02	
Total		2300	90	

TOTAL CREDIT DISTRIBUTION

18PCHM101	CORE I: ORGANIC CHEMISTRY I	SEMESTER - I
18PCHM101	CORE I: ORGANIC CHEMISTRY I	SEMESTER

COURSE OBJECTIVES:

The course aims

- To impart the basic principles of carbenes and intermediates
- To acquire knowledge about aliphatic and aromatic nucleophilic substitution reaction
- To recognize the chemistry of antibiotics, vitamins and stereochemistry
- To study the stereochemistry and aromaticity
- To learn possible reaction pathways in molecular rearrangement reactions

Credits	Credits: 5		
UNIT	CONTENTS	Hrs	CO
Ι	Basic Concepts: Formation, stability and reactions of carbenes and nitrenes. Kinetic and thermodynamic control of chemical reactions; Methods of determining reaction mechanism - kinetic methods - Primary and secondary kinetic isotopic effects; Non -kinetic methods - Study of intermediates, product analysis, isotope labeling, Stereochemical studies and cross over experiments; Principle of microscopic reversibility; Hammond postulate. Linear free energy relationship; Hammett equation - Significance of reaction and substituent constants (σ and ρ); Taft equation.	10	CO1
II	Aliphatic and Aromatic Electrophilic Substitution Reactions: The arenium ion mechanism, Nitration, sulphonation, halogenation, Friedel – Crafts alkylation, acylation, Gatterman, Gatterman- Koch, Vilsmeir, Reimer – Tiemann, Kolbes reaction and diazonium coupling. Electrophilic substitution on mono-substituted benzene, orientation and reactivity – ortho, meta and para directing groups, ipso attack ortho-para ratio. SE ₁ and SE ₂ mechanism – keto-enol tautomerism– HVZ reaction- aliphatic diazonium coupling-acylation at an aliphatic carbon-Vilsemeyer Hack reaction at aliphatic carbon-Stork- enamine reaction.	10	CO2

III	Vitamins and Antibiotics: Chemistry of penicillin, streptomycin, chloromycetin, oxytetracycline and griseofulvin; Detailed chemistry and physiological action of Vitamin A, ascorbic acid, thiamin, riboflavin and elementary aspects of Vitamin B ₁₂ .	10	CO3
IV	Stereochemistry and Aromaticity: Homotopic, enantiotopic, diastereotopic H atoms, groups in organic molecules. Fischer, Newman and Sawhorse projections and their interconvertion.Optical activity in the absence of chiral carbon – biphenyls, allenes and spiranes. E – Z isomerism of olefins containing one double bond and more than one double bond. Stereospecific and stereoselective synthesis with suitable examples, asymmetric synthesis – Crams rule. Aromaticity - benzenoid, heterocyclic and non- benzenoid compounds, Huckel rule, non-aromatic (cyclooctatetraene) and anti-aromatic systems (cyclobutadiene) – annulenes, azulene.	10	CO4
V	Molecular Rearrangements: Nucleophilic, Electrophilic and Free radical rearrangements – memory effects, migratory aptitudes, Inter- Intra molecular rearrangement, Wagner -Meerwin, Pinacol-Pinacalone, Dienone-Phenol, Favorski, Baeyer–Villiger, Wolff, Stevens, Von – Richter, Hofmann, Schmidt and Fries rearrangements, Photo fries rearrangement.	10	CO5

Text B	ooks:
1	Jerry March. 2013. Advanced Organic Chemistry: Reactions, Mechanisms, and
1	Structure. [Seventh Edition]. John Wiley & Sons, New York.
2	Kalsi. P.S. 2010. Organic Reactions and Mechanisms. [Third Edition]. New
-	Age International Publishers, New Delhi.
3	<i>Ernest L. Eliel.</i> 1995. Stereochemistry of Carbon Compounds. [Second Edition].
0	Tata Mc. Graw-Hill Publishing Company, New Delhi.
Refere	nce Books:
1	Kalsi. P.S. 2008. Stereo Chemistry and Mechanism through Solved Problems.
1	[Fourth Edition]. New Age International Publishers, New Delhi.

2	Nasipuri. D. 2014. Stereo Chemistry of Organic Compounds. [Fifth Edition].
2	New Age International Publishers, New Delhi.
2	Mukherj, S.M. and Singh, S.P. 1986. Reaction Mechanism in Organic
5	Chemistry. [Third Edition]. Macmillan Publishers, London.
4	Morrison boyd & Bhattacharjee. 2010. Organic Chemistry. [Seventh Edition].
4	Prentice-Hall, New Delhi.
5	Jagdamba Singh, L.D.S. Yadav. 2010. Advanced Organic Chemistry. Revised
5	edition. Pragati Prakashan.

After completion of the course, the students will be able to

CO1	Recall the fundamental principles of organic chemistry that include chemical bonding, structural isomerism, stereochemistry, chemical reactions and mechanism.						
CO2	Develop basic skills for the multi-step synthesis of organic compounds and justify a reasonable mechanism for a chemical reaction.						
CO3	Recognize the structure and function of vitamins, antibiotics, penicillin, streptomycin, chloromycetin, etc.,						
CO4	Interpret the concept of aromaticity and the main properties of aromatic compounds and evaluates the importance of stereochemistry in organic chemistry						
CO5	Evaluate the concept of rearrangement reactions in organic compounds						

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	L
CO2	L	Н	М	М	Н
CO3	М	L	Н	Н	М
CO4	М	М	L	L	Н
CO5	L	Н	L	М	Н

MAPPING:

18PCHM102		CORE II: INORGANIC CHEMISTRY I	SEMES	STER – I			
COURS	SE OBJE						
The cou	The course aims						
• [Го study	the basic idea about the structure and bonding					
• [Го analy	ze the analytical tools are used in nuclear chemistry					
• [Fo unde	rstand the properties of solids					
• (Cognize	the basics of solid state chemistry					
• 1	Evaluate	the basics of magnetism and its properties					
Credits	: 5	Г	otal hou	rs: 50			
UNIT		CONTENTS	Hrs	CO			
	Structu	are and Bonding: Hard and Soft acids and bases -					
	classifi	cations, Acid-Base strength, symbiosis, Theoretical					
	basis o	of Hardness and Softness, applications of HSAB.					
Ι	Rings-	Phosphazenes- Structure, Craig and Peddockmodel,	10	CO1			
	Dewar	model. Polysulphur - nitrogen compounds.Silicates					
	- struc	ture. Polyacids - Isopolyacids of V, Cr, Mo and W;					
	Hetero	polyacids of Mo and W (only structural aspects).					
	Nuclea	ar Chemistry - I: Nuclear properties - Nuclear spin					
	and m	oments, features of the liquid drop and the shell					
	models	s of the nucleus; Modes of radioactive decay - orbital					
II	electro	n capture nuclear isomerism, internal conversion;	10	CO2			
	Nuclea	r reactions - Types, reaction cross section, Q-value,					
	thresh	old energy, compound nuclear theory, high energy					
	nuclea	r reactions, nuclear fission and fusion reactions as					
	energy	sources, direct reactions, Stellar energy.					
	Nuclea	tr Chemistry-II: Applications relating to Nuclear					
	Chemi	stry - Neutron activation analysis, Radio					
III	pharm	tions lastonic dilution analysis Dediction	10	CO3			
	Chomi	struk radiation designatruk radialysis. Radiation					
	budrat	ad electron					
	Solid	- State chemistry: Defects in solids - Point defects					
	line o	lefects and surface defects. Non-stoichiometric					
IV	compo	unds: Use of X-ray powder data in identifying	10	CO4			
	inorga	nic crystalline solids; Details for cubic systems;					

	Structures of NiAs, CdI_2 , Perovskite, rutile, fluorite and		
	antifluorite- zinc blende and wurtzite.		
V	Properties of Solids: Electrical properties of solids - Band Theory, conductors, insulators, semiconductors, superconductors, solid state electrolytes; Magnetic properties - dia,para, ferro, anti-ferroand ferrimagnetism - hysterisis; Optical properties - Solid-state lasers and Inorganic phosphors. Reactions in solid state, diffusion mechanism, formation of spinels; solid solutions, order- disorder transformations.	10	CO5

Text b	ooks:
1	Cotton F.A. and Wilkinson, G. 2007. Advanced Inorganic Chemistry. [Sixth
-	Edition]. Wiley Eastern Co, New Delhi.
2	Arnikar, Harijeevan. 2011. Essentials of Nuclear Chemistry. [Fourth Edition].
-	New age international, New Delhi.
3	Anthony R. and West. 1999. Basic Solid State Chemistry. [Second Edition]. John
0	Wiley & sons, New York.
Refere	nce Books:
	Huheey. J.E, Keiter. R. L, Ellen. A. and Keiter. 2006. Inorganic chemistry
1	principles of structure and reactivity. [Fourth Edition]. Pearson Education,
	USA.
2	Purcell. K. F and Kotz. J. C. 1980. Inorganic Chemistry. W.B. Saunders Co, USA.

After completion of the course, the students will be able to

CO1	Acquire knowledge of atomic and periodic properties of elements
CO2	Understand the basic principles of acid-base chemistry and about solvents
CO3	Design the geometry of molecules and assess the nomenclature for compounds
CO4	Revise the basic concepts of quantum chemistry and utilize the principles of quantum chemistry
CO5	Formulate the laboratory techniques and prepare solutions for practicals

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	Н	L
CO2	L	Н	М	L	Н
CO3	М	L	Н	М	L
CO4	L	М	Н	L	М
CO5	М	Н	L	М	Н

18PCH	M103 CORE III: PHYSICAL CHEMIST	RY I	SEMES	TER – I			
COUR	SE OBJECTIVES:						
The cou	The course aims						
• [To inculcate the principles of thermodynamics,	, quantum cl	hemistry a	and group			
t	theory						
• [To provide knowledge about the rate and variou	is theory of ra	ates				
• [To feature the basics of quantum chemistry						
• [To estimate the types of representations of a mol	ecule					
• [To know the different types of spectra of molecu	les					
Credits	5: 4		Total hou	rs: 50			
UNIT	CONTENTS		Hrs	СО			
	Thermodynamics I: Partial molar properties -	Partial mola	r				
	free energy (Chemical potential) - Partial mola	r volume and	1				
	Partial molar heat content - their sign	ificance and	1				
	determination of these quantities. Gibbs-Duhe	em equation	-	CO1			
Ι	Variation of chemical potential with temp	perature and	ł				
	pressure. Thermodynamics of real gases - g	as mixture	- 10				
	definition of fugacity - variation of fu	igacity with	n				
	temperature and pressure -thermodynamics	of ideal and	ł				
	non-ideal binary solutions - dilute solutions. D	etermination	n				
	of fugacity of real gases and vanderwaals g	as - fugacity	y				
	components in ideal solutions - Duhem-Margu	lles equation	•				
	Quantum Chemistry – I: Black body	Radiation ·	-				
	Experimental results – Photoelectric effect	- de-Broglie	e				
	equation – Heisenberg uncertainty principle	e – Comptor	1	600			
11	effect -operators and commutation relations	s – quantum	n 10	02			
	mechanical postulates – Schrodinger equa	tion and its	s				
	solution to the problem of a particle in or	ne and three	e				
	dimensional boxes – the harmonic oscillator.						
	Quantum Chemistry – II: Schrödinger equa	ation for the	e				
	rigid rotator and Hydrogen atom – arriving	; solution to:	r				
III	energy and wave function – the origin	of quantum	n 10	CO3			
	numbers and their physical significance -	- Probability	y .				
	aistribution of electrons. Approximation	methods -	-				
	Perturbation and Variation methods – ap	oplication to	0				

	Hydrogen and Helium atom.		
IV	Group Theory – I: Symmetry elements and symmetry operations – Point groups –identification and Representation of groups – comparison of Molecular symmetry with Crystallographic symmetry – Reducible and irreducible representation – Direct product representation – Great orthogonality theorem and its consequences – Character Table and their uses.	10	CO4
V	Group Theory – II: Symmetry selection rules for vibrational, Electronic and Raman Spectra – determination of representation of vibrational modes in non-linear molecules such as H_2O , CH_4 , XeF_4 , SF_6 and NH_3 -symmetry of Hybrid orbitals in non-linear molecule (BF ₃ , CH_4 , XeF_4 , PCl ₅ and SF ₆) – Electronic spectra of formaldehyde.	10	CO5

Text B	ooks:			
1	Glasstone, Samuel. 2007. Thermodynamics for chemists. [Third Edition].			
-	Affiliated East West press, New Delhi.			
2	Prasad R. K. 2014. Quantum Chemistry. [Fifth Edition]. New age publisher.			
_	New Delhi.			
Reference Books:				
1	Ramakrishnan, V. and Gopinathan, M. S. 2014. Group theory in chemistry.			
	[Second Edition]. Vishal Publications, Jalandar.			
2	Raman, K.V. 2004. Group theory and its application to Chemistry. [Eleventh			
<i>∠</i>	Edition]. Tata Mc.Grow Hill Publishing Co, New Delhi.			
	Duri D. D. Charmer I. D. and Dathania M. C. 2017. Driverintas of Discission			
3	Puri B. R., Sharma L. R. and Pathania IVI. S. 2017. Frinciples of Physical			
	Chemistry . [Forth Seventh Edition]. Vishal Publishing Co, Jalandhar.			

After completion of the course, the students will be able to

CO1	Explain fundamental thermodynamic properties and solve problems using the properties and relationships of thermodynamic fluids.
CO2	Recall the basics of quantum mechanics to remind the difference between classical and quantum world.
CO3	Use approximate methods in solving molecular problems.
CO4	Express products of elements of a group defined by generators and relations in appropriate standard form.
CO5	Evaluate the definition of a simple group; calculate composition factors and composition series of certain groups.

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	М
CO2	L	М	Н	М	L
CO3	L	Н	М	L	М
CO4	М	L	М	Н	L
CO5	М	Н	L	М	Н

18PCHM104		CORE IV: SPECTROSCOPY		SEMESTER - I		
COUR	SE OBJ					
The cou	The course aims					
•	Го incu	lcate the basic principles of UV-Vis and IR spect	rosco	py techn	iques and	
i	ts appl	ications.				
• [Го pro	ovide information about the various types o	of NI	MR spe	ctroscopic	
t	echniq	ues and factors affecting it.				
• [Го ackr	owledge 2D NMR techniques and predict the spe	ctra o	f simple	molecules	
• [Го est	imate the mass spectroscopic techniques ar	nd its	s uses	to study	
1	rearran	gement reactions				
• [Го iden	tify spectra of organic compounds				
Credits	: 4		Т	'otal hou	ırs: 40	
UNIT		CONTENTS		Hrs	CO	
	UV-V	IS: Ultraviolet – Visible spectroscopy – type	es of			
	electr	onic transitions –chromophores and auxochrom	nes -			
	tactor	s influencing positions and intensity of absorp	otion			
	bands	- absorption spectra of dienes, polyenes and al	pha,			
Ι	beta-	unsaturated carbonyl compounds – Woodwar	rd –	8	CO1	
	Fieser	rules.				
		pectroscopy : Vibrational frequencies and fac	ctors			
	affect	ing them – identification of functional groups –	intra			
	and in	iter molecular nydrogen bonding – finger print re	gion			
	- Far	R region – metal ligand stretching vibrations.	n ati a			
		spectroscopy: basic idea - Nuclear spin - mag	tho			
	nroso	nce of magnetic field relative populations of en	orgy			
	lovole	- macroscopic magnetization - basic principle	ergy os of			
	NMR	experiments - CW and FT NMR - ¹ H NM	IR _			
II	chemi	ical shift and coupling constants - factors influen	in –	8	CO2	
	proto	n chemical shifts and vicinal proton – proton cour	oling			
	const	ants $-$ ¹ H NMR spectra of simple organic molec	ules			
	AX a	nd AB spin system – spin decoupling – nu	clear			
	Overl	nauser effect – proton exchange.				

III	¹³ C NMR and Two - Dimensional NMR spectroscopy: ¹³ C NMR – proton decoupled and off-resonance ¹³ C NMR spectra – factors affecting ¹³ C chemical shifts – ¹³ C NMR spectra of simple organic molecules – Basic principles of two-dimensional NMR spectroscopy – COSY, NOESY, HMBC and HSQC spectra and their applications.	8	CO3
IV	Mass spectrometry: Principles – instrumentation – measurement techniques - meta stable peak - N-rule – (EI & FAB) – presentation of spectral data – molecular ions – isotope ions – Fragmentation process - symbolism (scission only) – even and odd electron ions – scission with rearrangement – Retro Diels-Alder rearrangement – McLafferty rearrangement – Mass spectra of hydrocarbons, alcohols, phenols, aldehydes, ketones, carboxylic acids, thiols, ether and amines.	8	CO4
V	Spectroscopic identification of organic compounds: Problems involving the identification of organic compounds using UV, IR and NMR and mass spectrometry.	8	CO5

Text B	ooks:
1	<i>Dyer, D.</i> 1978. Application of absorption spectroscopy of organic compounds,
1	Prentice -Hall, Englewood, Cliffs.
2	Gary M. Lampman, George S. Kriz, James R. Vyvyan, Donald L. Pavia. 2014.
-	Introduction to Spectroscopy. [Fifth Edition]. Cengage Learning
3	Kemp, W. 2008. Organic spectroscopy. [Third Edition]. Macmillan Education,
U	UK.
Refere	nce Books:
1	Lambert J.B, H. F. Shurrell, and R. G. Cooks. 1987. Introduction to organic
T	spectroscopy, Mac Millan.
	Silverstein R. M and F. X. Webster. 2014. Spectrometric identification of organic
2	compounds. [Seventh Edition]. John Wiley.

After completion of the course, the students will be able to

CO1	Study the interactions of electromagnetic radiation and matter and their applications in spectroscopy.				
CO2	Apply formalisms based on molecular symmetry to predict spectroscopic properties.				
CO3	Analyze and interpret spectroscopic data collected by the methods discussed in the course.				
CO4	Operate common laboratory instruments used for chemical analysis and describe and understand the capabilities of instrumental methods.				
CO5	Apply formalisms based on molecular symmetry to predict spectroscopic properties.				

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	Н	М	Н
CO2	М	Н	L	М	L
CO3	L	Н	М	L	Н
CO4	М	L	Н	Н	М
CO5	Н	М	L	М	L

18PCH	MP101	CORE PRACTICAL I: ORGANIC PRACTICAL I	SEMES	TER – I			
COURS	COURSE OBJECTIVES:						
The cou	irse aim	5					
•	l'o learn	about the qualitative analyses by separation					
Cradita	l o learn	the preparation of organic compounds by named i	Tetal how	#c. E0			
Cleuits	. 3	CONTENTS	1 otal llou	15. 50 CO			
		CONTENTS		CO			
Separa	tion of c	ompounds					
Aromat	tic / Alij	ohatic					
Saturat	ed / uns	aturated					
Special	element	s N / S / X		CO1			
Functio	nal grou	ips		COI			
Prepara	ation of f	unctional derivative					
(5 mixtures)							
Prepara	ation:						
1	Beta na	phthyl methyl ether from beta naphthol					
2	Res-ac	etophenone from resorcinol					
3	para-N	itrobenzoic acid from para nitrotoluene					
4	meta-N	itroaniline from <i>meta</i> -dinitrobenzene		CO2			
5	Methy	l orange from sulphanilic acid					
6	Anthra	equinone from anthracene					
7	Benzhy	vdrol from benzophenone					

Reference Books:			
1	B.S. Furniss, A.J. Hannaford. P.W.G. Smith and Tatchell, A.R. 2003. Vogel's		
	Practical Organic Chemistry. [Fifth Edition]. ELBS & Longman, New Delhi.		
2	Raj K. Bansal. 2008. Laboratory manual of Organic Chemistry. [5th Edition].		
	New Age International (P) Ltd, New Delhi.		

After completion of the course, the students will be able to

CO1	Analyse organic compound s systematically and be able to identify their various chemical nature
CO2	Prepare organic compounds by various methods

18PCH	CHMP102 CORE PRACTICAL II: INORGANIC PRACTICAL I SEMESTER - I		STER – I	
COURS	SE OBJE	ECTIVES:		
The cou	irse aim	5		
•]	[o analy	se inorganic mixture quantitatively		
•]	[o learn	colorimetric estimation of metals		
•]	lo prepa	re the inorganic complexes		
Credits	: 3		Total ho	ours: 50
		CONTENTS		СО
Semi-n	nicro qu	alitative analysis		
Semi-micro qualitative analysis of mixtures containing two common and two rare cations. The following are the rare to be included :W, Tl, Mo, Te, Se, Ce, Th, Be, Zr, V, U and Li.(5 mixtures)				CO1
Prepara	tion:			
1	Potassi	um trioxalato aluminate(III) trihydrate		
2	<i>Tris</i> thi	ourea copper (I) chloride		
3 Potassium trioxalato chromate(III) trihydrate				
4	Sodiun	n <i>bis</i> (thiosulphato) cuprate(I)		CO2
5	Tetra a	mminecopper(II)sulphate		
6	Potassi	um tetrachloro cuprate(II)		

Reference Books:				
	Svehla, G., Sivasankar, B., 2012. Vogel's qualitative Inorganic analysis. [Seventh			
1	Edition]. Pearson Education India.			
2	Ramanujam V.V.1974. Inorganic Semi-micro Qualitative analysis. National			
	Publishing Co.			

After completion of the course, the students will be able to

CO1	Analyse an inorganic compound systematically by laboratory techniques
CO2	Synthesize inorganic compounds by various methods

r						
18PLS101		CAREER COMPETENCY SKILLS I	SEMESTER - I			
COUR	SE OBJI	ECTIVES:				
The c	course ai	ms				
•	To impa	rt knowledge on the Aptitude.				
• 7	To enha	nce employability skills and to develop career compo	etency.			
			Total Hours	s: 15		
UNIT		CONTENTS	Hrs	СО		
Ι	Solvin HCF, I	g Simultaneous Equations Faster – Number System : LCM – Square roots and Cube roots - Averages	3	CO1		
II	Proble	ms on Numbers -Problems on Ages	3	CO2		
III	Calenc	lar – Clocks – Pipes and Cisterns	3	CO3		
IV	Time a	nd Work – Time and Distance	3	CO4		
V	Ratio a	3	CO5			
Text Bo	ook:		I			
	Aggarw	al R.S. 2013. Quantitative Aptitude. [Seventh Revis	ed			
1	1 Edition].S.Chand& Co., New Delhi.					
Reference Book:						
1	1 <i>Abhijith Guha</i> , Quantitative Aptitude for Competitive Examinations , 5 th Edition, Tata McGraw Hill, 2015, New Delhi.					
COUR	SE OUT	COMES (CO)				

After completion of the course, the students will be able to :

CO1	Carry out mathematical calculations using shortcuts.	
CO2	Calculate Problems on Ages with shortcuts.	
CO3	CO3 Understand the core concepts of Pipes & Cisterns, Calendar & Clocks.	
CO4	Obtain knowledge on shortcuts to Time & Work and Time & Distance.	
CO5	Calculate Ratio & Proportion, Partnership with shortcuts.	

18PCH	M201 CORE V: ORGANIC CHEMISTRY II SE	MESTEI	R – II			
COUR	COURSE OBJECTIVES:					
The cou	urse aims					
• [To provide knowledge about the isolation, and elucidation	of vario	us natural			
1	products					
•	Γο know different chemical reactions in heterocyclic compoun	ds				
•	Γο identify the mechanism of elimination and addition reactio	ns				
•	Γο analyze the function of nucleic acids and chemistry behind	the prote	eins			
•	Γο recognize the structure and synthesis of alkaloids and terpe	enoids				
Credits	:5 1	'otal hou	rs: 50			
UNIT	CONTENTS	Hrs.	СО			
	Aliphatic Nucleonhilic Substitution Reaction: The SNa					
	SN ₁ and SN: SN' ₁ SN' ₂ mechanisms. Effects of substrates					
	attacking nucleophile leaving group. Neighboring group					
	participation by π and σ bonds anchimeric assistance		CO1			
	Nucleophilic substitution at an allylic aliphatic trigonal					
1	and vinylic carbon Williamson reaction. Vonbraun	10				
	reaction Aromatic nucleophilic substitution reactions.					
	SNAr mechanism, arvl cation mechanism, Benzyne					
	mechanism, aromatic nucleophilic substitution of activated					
	halides – Ziegler alkylation, Chichibabin reaction.					
	Heterocyclic Compounds: Synthesis and properties of					
	imidazole, oxazole and thiazole. Synthesis, properties and					
II	structural elucidation of flavones, isoflavones and	10	CO2			
	anthocyanins. Synthesis of pyrimidines, synthesis and					
	structural elucidation of purines (uric acid and caffeine).					
	Elimination Reactions and Addition Reactions: E ₁ , E ₂ ,					
	E ₁ cB and E ₂ CB mechanisms; Stereochemistry of elimination					
	- Hofmann and Saitsev rules; Competition between					
III	elimination and substitution; pyrolytic cis elimination -					
	Chugaev reaction; Bredt's rule; Hofmann degradation and	10	CO3			
	Cope elimination. Electrophilic, Nucleophilic and Free					
	radical additions – Additions of halogen and halogen acids					
	to C-C multiple bonds; Markovnikov and Anti					
	Markovnikov addition; Stereochemistry of additions;					

	Hydroboration and Diels - Alder reactions. Reactions of				
	carbonyl group – Mechanisms of Aldol, Perkin, Stobbe and				
	Dieckmann condensations.				
	Peptides, Proteins and Nucleic Acids: Basic idea about				
	peptides - classification of proteins, Sequence analysis of				
	peptides by chemical, enzymatic and mass spectrometric				
	methods; Peptidisation methods like activated ester				
IV	method, mixed anhydride method using reagents like DCC	10	CO4		
	and Woodward reagent. Primary, secondary and tertiary				
	structures of proteins and their functions. Nucleic acids –				
	nucleosides, nucleotides and their chemistry including				
	synthesis, RNA and DNA; Functions of nucleic acids.				
	Alkaloids and Terpenoids: General methods of structural				
	elucidation of alkaloids; Structure, synthesis and				
V	stereochemistry of Quinine, papaverin, lysergic acid,	10	CO5		
· ·	atropine and reserpine; Biosynthesis of alkaloids.	10	000		
	Structure, Stereochemistry and synthesis of zingiberene,				
	cadinene and abietic acid; Biosynthesis of terpenoids.				
Text B	ooks:				
1	Mukherji, S.M. and Singh, S.P. 2009. Reaction Mechanism in	Organic			
1	Chemistry. [Fifth Edition-reprint]. Macmillan Publishers, London.				
2	Morrison boyd & Bhattacharjee. 2010. Organic Chemistry.	[Seventh	Edition].		
_	Prentice-Hall, New Delhi.				
3	Kalsi. P.S. 2010. Organic Reactions and Mechanisms. [Third	Edition].	New Age		
	International Publishers, New Delhi.				
Refere	nce Books:				
1	<i>Jerry March.</i> 2013. Advanced Organic Chemistry-Reactions, Structure. [Seventh Edition]. John Wiley &Sons, New York.	Mechar	nisms and		
2	<i>Francis A. Carey.</i> 2015. Organic Chemistry. [Tenth Edition]. Companies, New York.	The Mc	Graw-Hill		
3	<i>Kalsi, P.S.</i> 2005. Stereochemistry – Conformation and M Edition]. Wiley Eastern Limited, New Delhi.	Mechanis	sm. [Sixth		
4	<i>Finar, I.L.</i> 2000. Organic Chemistry , Volume II, [Fifth Edireprint, Pearson Education Asia Pvt. Ltd., USA.	ition]. Fi	rst Indian		

After completion of the course, the students will be able to

CO1	Recognize, and predict the reaction outcome for, common transformations of alkenes, alkynes and aromatic compounds with mechanism
CO2	Recall the methodologies of synthesis of heterocyclic compounds
CO3	Apply the concepts of acidity and basicity in daily life
CO4	Evaluate the concepts and basic ideas of protein & nucleic acids and their functions
CO5	Understand the basic chemical and structural features of alkaloids and terpenoids

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	L	Н	L
CO2	Н	М	М	Н	Н
CO3	М	L	Н	М	L
CO4	L	Н	М	L	М
CO5	L	Н	L	М	Н

18PCH	M202 CORE V	I: INORGANIC CHEMISTRY II	5	SEMEST	ER - II
COURS	SE OBJECTIVES:				
The cou	rse aims				
• To k	now basic idea on s	tability and reaction mechanism of coo	rdin	ation co	mplexes
• To l	earn about organom	etallic compounds and catalysis			
• To e	valuate the stability	and stereochemical aspects of inorgan	ic co	mplexe	3
• To r	ecognize the reaction	n mechanism of coordination complexe	es		
• To g	ain knowledge abou	at the vitality of catalysts in organomet	allic	reaction	l
Credits	5			Total	hours: 50
UNIT		CONTENTS		Hrs	CO
	Metal - Ligand Bo	nding: Crystal field theory - splitting	of		
	d-orbitals under	various geometries, factors affecti	ng		
	splitting, CFSE,	evidences for CFSE (Structural a	nd		
	thermodynamic eff	fects), Spectrochemical series; Jahn-Tel	ler		
	distortion - Splitt	ing pattern in octahedral complex	es,		
I	Dynamic and Sta	tic J. T. effect, Jahn-Teller effect a	nd	10	CO1
	Chelation; Limitati	ons of CFT; Evidences for metal-liga	nd		
	overlap; M.O. theo	ry and energy level diagrams, concept	of		
	weak and strong	g fields, sigma and pi bonding	in		
	complexes, nephela	auxetic effect and magnetic properties	of		
	complexes.				
	Stability and St	ereochemical aspects of complex	es:		
	Stability of comp	blexes - Factors affecting stability	of		
	complexes, thermo	dynamic aspects of complex formation	on,		
	Stepwise and o	verall formation constants, stabil	ity		
	correlations, statist	tical and chelate effects; Determinati	on		
II	of stability consta	ant - Polarographic, photometric a	nd	10	CO2
	potentiometric n	nethods. Stereochemical aspects	-		
	Stereoisomerism in	inorganic complexes, isomerism arisi	ng		
	out of ligand d	istribution and ligand conformation	on,		
	chirality and nome	nclature of chiral complexes; applicati	on		
	ot ORD and CD	in the identification of chirality	of		
	complexes.				

	Reaction mechanisms in Complexes: Electron transfer		
III	reaction incentinisms in comprexes. Electron number reactions - Outer and inner sphere processes; Cross reactions and Marcus-Hush theory. Reaction mechanism of coordination compounds, Labile and inert complexes. General mechanism of Substitution in square planar and octahedral complexes - Trans effect -Replacement of coordinated water - mechanism of acid hydrolysis and base hydrolysis - Conjugate base mechanism - Application of substitution reaction in the synthesis of Platinum and cobalt complexes.	10	CO3
IV	Organometallics: Basic concepts –Hapticity, ligand classification, synthesis and structure – 18 electron rule – applications and limitations – isolable concept and its usefulness. Preparation, properties, structure and bonding in metal carbonyls, nitrosyls, metal olefins, acetylenes, metallocene and arene complexes.	10	CO4
V	Reactions and Catalysis by Organometallics : Organometallic reactions – Ligand association and dissociation – oxidative addition and reductive elimination – Insertion reactions – Reactions of coordinated ligands in organometallics - Hydrogenation of olefins (Wilkinson's catalyst), hydroformylation of olefins using Cobalt or Rhodium catalysts (oxo process), Oxidation of olefins to aldehydes and ketones (Wacker process), Zeigler-Natta catalyst and carbonylation of methanol.	10	CO5

Text B	ooks:
1	Banerjea, D. 2009. Coordination Chemistry. [Third Edition]. Tata McGraw Hill.
-	New York.
2	Huheey. J.E, Keiter. R. L, Ellen. A and Keiter. 2006. Inorganic chemistry principles
	of structure and reactivity. [Fourth Edition]. Pearson Education, USA.
3	Madan R.D., Tuli G.D. and Malick S. 2010. Selected Topics in Inorganic
U	Chemistry, [Revised edition] S.Chand& Co., New Delhi.
4	Gopalan F.A. and Ramalingam V. 2001. Concise Coordination Chemistry, Vikas
	Publisher, New Delhi.
Refere	nce Books:
1	Shriver D. F, Atkins P.W. and Langford C.H. 2010. Inorganic chemistry. [Fifth
	Edition].
2	Cotton, F. A. and Wilkinson, G. 2000. Advanced Inorganic Chemistry. [Sixth
	Edition].Wiley Eastern, New Delhi.

After completion of the course, the students will be able to

CO1	Rationalize the synthesis, structure, bonding, properties and reactivity of both main group and transition metals
CO2	Predict the stereochemical outcome of reactions in organometallic compounds by considering the reaction mechanism
CO3	Predict the mechanisms taking place in square planar and octahedral complexes using various theories
CO4	Recognize structure and bonding issues to understand the stability and reactivity of simple organometallic complexes
CO5	Know the important applications of organometallic homogeneous catalysis in its production

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	L	Н	М
CO2	М	L	Н	М	L
CO3	М	Н	М	L	L
CO4	Н	L	Н	М	М
CO5	L	М	L	Н	Н

18PCHM203		CORE VII: PHYSICAL CHEMISTRY II	SEMES	ΓER – II
COUR	SE OB	JECTIVES:		
The cou	ırse air	ns		
•	Го gair	n the knowledge about statistical thermodynamics, c	hemical ki	netics and
elec	troche	mistry		
• 7	Го und	erstand the basic principles of chemical kinetics		
•	To prov	vide knowledge about reactions in solutions		
• [To cogi	nize electrochemical theories and their phenomena		
• [To incu	lcate the concepts of spectroscopy quantum mechanic	cally	
Credits	5: 4		Total hou	rs: 40
UNIT		CONTENTS	Hrs	СО
	Ther	modynamics - II: Derivation of Boltzman	n	
	distri	bution equation - physical significance of partition	n	
	funct	ion- translational, rotational, vibrational and electroni	c	
	partit	ion functions - Quantum statistics - Bose - Einstein	n	
	and H	Fermi – Dirac distribution equations – comparison c	f	
T	B.E at	nd F.D statistics with Boltzman statistics – Concept c	f 8	CO1
-	Nega	tive Kelvin Temperature. Partition function	-	
	Relat	ionships between partition function and	đ	
	therm	nodynamic properties such as E, H, Cp, Cv, F	? .	
	Deriv	ration of PV=RT. Calculation of S, A, G etc., from	n	
	partit	ion functions- calculation of equilibrium constants fo	r	
	very	simple reactions.		
	Chen	nical Kinetics – I: Theories of Reaction rates	-	
	Arrhe	enius theory – effect of temperature on reaction rate	-	
	Hard	- Sphere collision theory of reaction rates -molecula	r	
	beam	s – Reaction cross section – effectiveness of collisions	-	
II	Proba	ability factor. Transition state theory of reaction rates	- 8	CO2
	Poter	itial energy surfaces – Partition functions and	f	
	activa	ated complex - Eyring equation - Comparison c	f	
	collis	ion theory and activated complex theory – Estimation	n	
	of fre	e energy, enthalpy and entropy of activation and thei	r	
	signif	icance.		

III	Chemical Kinetics – II : Reactions in solutions – comparison between gas phase and solution reactions – Diffusion controlled reaction - the influence of solvent, ionic strength, dielectric constant and pressure on rate of reactions in solution – Kinetic isotope effects – primary and secondary effects - Linear free energy relationship – Hammett and Taft equations.	8	CO3
IV	Electrochemistry - I : Ions in solutions – Debye – Huckel theory of strong electrolytes – Debye – Huckel – Onsager equation – verification and limitation – Debye – Huckel limiting law and its extension. Electrode – Electrolyte interface - adsorption at electrified interface – electrical double layers – Electro capillary phenomena – Lippmann capillary equation – structure of double layers – Helmholtz- Perrin, Gouy-Chapman and Stern models of electrical double layers – electro kinetic Phenomena – Tiselius method of separation of proteins –Membrane potential.	8	CO4
V	Molecular Spectroscopy – I: Interaction of matter with radiation – Einstein's theory of transition probability – Rotation spectroscopy – Rigid Rotor – Intensity of spectral lines – Molecular parameters from rotation spectra - Effect of isotopic substitution on the rotation spectra Vibrational spectroscopy – harmonic oscillator – anharmonic oscillator – Hot bands – selection rules – Vibrational spectra of polyatomic molecules – Overtones and combination frequencies – Fermi Resonance. Raman spectroscopy – Raman effect –Rotational and vibrational - Raman Spectra – Mutual Exclusion Rule.	8	CO5

Text B	ooks:	
1	Rajaram, J and Kuriacose J.C. 2011. Kinetics and mechanism of chemical	
	transformation. Macmillan India Ltd, New Delhi.	
2	Glasstone, Samuel. 2007. Thermodynamics for chemists. [Third Edition].	
	Affiliated East West press, New Delhi.	
3	<i>Prasad R. K.</i> 2014. Quantum Chemistry . [Fifth Edition]. New age publisher.	
0	New Delhi.	
1	<i>Gurudeepraj</i> .2014. Advanced Physical Chemistry. Goel Publishing House,	
T	Meerut.	
5	Puri P. R., Sharma L. R. and Pathania M. S. 2010. Principles of Physical	
5	Chemistry, Vishal Publishing Co, Jalandhar.	
Reference Books:		
1	Harris, G.M.1966. Chemical Kinetics. D.C. Heath &Co, USA.	
2	Moore W.J.1998. Physical Chemistry, [Fifth edition]Orient Longman, London.	
3	Banwell C. 1995. Fundamentals of Molecular Spectroscopy, [Fourth edition-	
	reprint]McGraw Hill, New York.	
4	Laidlar, K.J.2008. Chemical Kinetics. [Third edition-reprint] Harper and Row,	
T	New York.	

After completion of the course, the students will be able to

CO1	Discuss, develop and apply various quantum mechanical equations for open and closed systems.
CO2	Describe how the collision frequency, kinetic energy and orientation of colliding reactant molecules affect the rate of a chemical reaction.
CO3	Demonstrate the coefficients of a balanced chemical equation to express the rate of reaction.
CO4	Recall the concepts of electrochemistry and about electric double layer models.
CO5	Understand the principles and the important effects in molecular spectroscopy.

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	L
CO2	L	М	Н	М	L
CO3	L	Н	М	L	М
CO4	М	L	Н	М	L
CO5	Н	Н	L	М	L
18PCHEL201		ELECTIVE I:POLYMER CHEMISTRY I	SEMES	STER - II	
------------	----------	--	-----------	-------------	
COUR	SE OBJ	ECTIVE:			
The cou	ırse ain	ns			
• [Го kno	w the basic concepts of polymer, coordination in j	polymer,	properties	
	of comr	nercial polymers and polymer processing			
• [Го gair	n knowledge about Coordination polymerization an	d the cat	alysts that	
e	enhance	es			
• [Го reco	gnize the properties of polymer and its measurements			
• [Го und	erstand the processing of polymers and its types			
• [Го prov	vide the knowledgeabout properties and chemistry	behind c	ommercial	
1	polyme	rs			
Credits	: 4		Fotal hou	rs: 40	
UNIT		CONTENTS	Hrs	СО	
	Basic	Concepts: Monomers, functionality of monomers and			
	polyn	ners, degree of polymerization, Linear, branched and			
	netwo	ork Polymers. Condensation Polymerization			
т	Mech	anism of stepwise polymerization. Kinetics and	0	CO1	
1	statist	ics of linear stepwise polymerization. Addition	0	COI	
	polyn	nerization: Free radical, cationic and anionic	!		
	polyn	nerization. Polymerization conditions. Polymerization			
	in hor	nogeneous and heterogeneous systems.			
	Co-or	dination Polymerization: Zeigler-natta catalyst-	,		
	kineti	cs, mono and bi metallic mechanism of co-ordination			
П	polyn	ners. Co-polymerization: Block and graft co-	8	CO2	
	polyn	ners, kinetics of co polymerization. Types of co-			
	polyn	nerization. Evaluation of monomer. Monomer			
	React	ivity ratio. Rate of co-polymerization.			
	Mole	cular Weight and Properties: Poly dispersion -			
	avera	ge molecular weight concept, number, weight and			
III	viscos	sity average molecular weights. Measurement of			
	molec	ular weights - Gel permeation chromatography and	8	CO3	
	light	scattering. Polymer structure and physical properties			
	– cry	ystalline melting point T _m .The glass transition	1		
	tempe	erature. Factors affecting Tg and Tm.			

IV	Polymer Processing: Plastics, elastomers, resins and fibres. Compounding processing technique, calendaring, die- casting, rotational casting, film casting, injection moulding, blow moulding extrusion, moulding, thermo forming, foaming, reinforcing and fibre spinning.	8	CO4
V	Properties of Commercial Polymers : Polyethylene, polyvinylchloride, polyamides, polyesters, polyurethane, polycarbonate, phenolic resins, epoxy resins. Contact lens, dental polymers, artificial heart, volve, kidney, skin and blood cells.	8	CO5

Text B	ooks:
1	Billmeyer, F.W. 2003. Text Book of Polymer Science. [Third Edition]. John
+	Wiley &Sons, New York.
2	Gowariker, V.R. Viswanathan, N.V and Sreedha J. 2015. Polymer Science.
-	[Second Edition]. New Age International Ltd, New Delhi.
Refere	nce Books:
1	Allcock, H. R and Lamber, F.W. 2004. Contemporary Polymer Chemistry.
	[Third Edition]. Prentice Hall, New Delhi.
2	<i>Flory, P. J.</i> 1995. Principles of Polymer Chemistry . [First edition-16 th reprint].Cornell University press, New York.
3	<i>Odian, G. 2007.</i> Principles of Polymerization . [Fourth Edition]. John Wiley &
	Sons, New York.

After completion of the course, the students will be able to

CO1	Recall the basic concepts and types of polymers
CO2	Understand the role of catalyst and techniques of polymerization
CO3	Know about the properties and measurement of molecular weights
CO4	Estimate the processing techniques of polymer
CO5	Demonstrate the properties of commercial polymers

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	L
CO2	Н	М	Н	М	L
CO3	L	Н	М	L	М
CO4	М	L	Н	Н	L
CO5	М	Н	L	М	Н

18PCH	EL202 ELECTIVE I:BIO-INORGANIC CHEMISTRY I	SEMES	STER - II
COURS			
The cou	rse aims		
•]	o understand the role of various elements in the living system	ns.	
• 7	o acquire basic knowledge about the structure and functions	of certai	n metallo-
e	nzymes.		
•]	o get an insight on the use of several spectroscopic and	analytic	al
t	echniques for structural investigation of bioinorganic compou	nds.	
•]	o know about the mechanism of binding interactions o	of metal	
С	omplexes with biomolecules and metal based drug action.		
Credits	:4 T	otal hou	rs: 40
UNIT	CONTENTS	Hrs	CO
	Metals and Non-metals in biological systems-Essential		
	and trace elements - Role of different metal ions in		CO1
	biological systems - Sodium - Potassium pump -		
Ι	Phorphyrin system - Structure and functions of	8	
	Hemoglobin and Myoglobin -Dioxygen binding,		
	transport and utilization-Structure and functions of		
	Chlorophyll.		
	Metallo enzymes - Definition - Examples –Structure and		
	functions of - Carboxy peptidase-A and Carbonic		
	anhydrase - Superoxide dismutase (SOD) - Xanthine	0	
11	oxidase – Nitrogenase – Vitamin B_{12} co-enzyme– Non-	8	CO2
	Hemeiron – sulphur proteins – Ferridoxins –		
	Rubredoxins - Cytochrome C - Blue copper proteins-		
	Plastocyanin.		
	Applications of physical methods to bioinorganic		
	chemistry: (Exclusive of Instrumentation) - X-ray		
	absorption spectroscopy (XAS) and Extended X-ray		
III	absorption fine structure (EXAFS) -Nuclear magnetic	8	CO3
	resonance spectroscopy(INMR) and Electron paramagnetic		
	dishroism (CD) Electronic spectroscopy(UV visible and		
	(CD) = Electronic spectroscopy(OV-VISIBLE and fluorescence emission)		
IV	Binding of metal ions and complexes to biomolecules:	8	CO4

	Types of binding – Nucleic acid structures - Fundamental		
	interactions with nucleic acids - Binding interactions of		
	tris-phenanthroline metal complexes with DNA-		
	Techniques to monitor binding. Chemotherapy-Radio		
	diagnostic agents- MRI scanning - Chelating Agents		
	(with special reference to EDTA) and therapy based on <i>in</i>		
	<i>vivo</i> chelation of radio nucleotides-Dosage and toxicity.		
	Drug discovery and design - Therapeutic index and		
	chemotherapeutic index - Structure- activity relationship-		
	Factors governing drug design - Computer aided drug		
V	design - Cancer chemotherapy - Bioinorganic chemistry of	8	CO5
v	platinum and ruthenium anticancer drugs - Mechanism of	0	000
	action of cis-platin - Clinical trials and their significance -		
	Applications of Coordination complexes in medicine and		
	agriculture		

Text Bo	ooks:					
1	Artherden, L.M.Bentley and Driver's, 2003. Textbook of Pharmaceutical					
L	Chemistry, [Eighth edition]. Oxford University Press, New Delhi. 2003.					
	Block, J.H.Roche, Soine, E.T.O. and Wilson, C.O. 1986. Inorganic Medicinal &					
2	Pharmaceutical Chemistry, [First edition], Varghese publishing house,					
	Mumbai.					
2	Rao, K.S. and Suresh, C.V. 2011. Pharmaceutical Inorganic Chemistry, Pharma					
5	Med Press.					
4	Kasture, A.V. Wadodkar, S.G. 2008. Pharmaceutical Chemistry-I, [Twenty Fifth					
4	edition]. Nirali Prkashan.					
5	Rajasekaran, V. N. 2005. Text Book of Pharmaceutical Inorganic Chemistry					
5	Theory and Practical , [Second edition]. Sun Publication, Chennai.					
Referen	nce Books:					
1	I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, 1994. Bioinorganic					
	Chemistry, University Science Books.					

2	Dr Asim K Dass, 2015. Bioinorganic Chemistry, Books and Allied (P)Limited.
3	Lawrence Que, Jr, 2000. Physical Methods in Bioinorganic Chemistry- Spectroscopy and Magnetism , University Science books.
4	J.E. Huheey, E.A. Kieter, R.L. Keiter, 1997. Inorganic Chemistry [Fourth Edition], Addision Wesely Publishing Company.

After completion of the course, the students will be able to

CO1	Recall the essential and trace elements in biological systems
CO2	Estimate the topical agents and its role in biological system
CO3	Demonstrate the chemical compounds as gastro intestinal agents
CO4	Predict the role of chemical compounds as electrolytes
CO5	Assess the utilization of inorganic Radio-Pharmaceuticals

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	L	L	М
CO2	М	L	Н	М	Н
CO3	Н	Н	М	L	L
CO4	L	М	L	Н	М
CO5	М	L	М	М	Н

18PCH	EL203 ELECTIVE I:PRINCIPLES AND APPLICATIONS OF DRUG DESIGN AND DISCOVERY	SEME	ESTER - II			
COURS	SE OBJECTIVES:					
The cou	The course aims					
•	To enable students to identify compounds in biological syste	m				
•	To describe the various drug – receptor interactions					
•	To provide information the drug molecules and its chemistry	T				
•	To enumerate steps to synthesize a drug molecule by various	method	S			
•	To know about drug Identification and Validation Steps in d	rug disco	overy			
Credits	:4 1	otal hou	rs: 40			
UNIT	CONTENTS	Hrs	СО			
Ι	Drug Design and Discovery: Historical background - drug targets: lipids, carbohydrates, proteins, enzymes, and nucleic acids as drug targets and receptors. Receptor Pharmocology – Agonists and Antagonists (partial and full) - Allosteric Modulators – Pharmacokinetics and pharmacodynamics: administration, absorption, distribution, metabolism, elimination of drugs – bioavailability of drugs - side effects - Case study: serotonin and dopamine receptors and transferring drugs.	8	CO1			
II	Drug Identification and Validation Steps in drug discovery: Leads identification – Hits - Drug validation – Natural products as drugs – molecular recognition in drug design – thermodynamic considerations – physical basis and inter molecular interactions between drugs and targets like electrostatic interactions – ionic bonds – hydrogen bonds – Inductive interactions – dispersive forces. Stereochemistry in drug designing – stereospecificity of drug targets – Eudesmic ratio – Examples of Eutomers and Distomers.	8	CO2			
III	Retrosynthetic strategies for Drug Synthesis: Introduction to retrosynthetic analysis and disconnection approach – synthons acceptor and donor – synthetic equivalents- umpolungs – planning a synthesis – relay and convergent routes - Guidelines for disconnection – one group C-X and	8	CO3			

	C-C disconnections – Chemoselectivity. Two group C-C disconnections in dicarbonyls – Case Study: Synthesis of Amelfolide.					
IV	Computer Aided Drug Design: Molecular modeling in drug design – Energy Minimization methods – both Molecular Mechanics and Quantum mechanical Methods – Energy minimization – Conformational analysis –Structure based and Ligand based Drug design – QSAR – parameters – Quantitative models of QSAR – Hansch methods – free Wilson model - 3D pharmacophore modeling – Docking – rigid and flexible methods of docking – Prediction of Binding modes – Protein Ligand binding free energies – Docking Score – validation.	8	CO4			
V	Quantum Mechanical Methods: Electronic structure calculations – Geometry Optimization – Potential Energy Surface – Global and Local Minima – Identification of Transition states – Semiemperical and Density Functional Methods - Calculation of atomic Charges, Electrostatic Potential Maps.	8	CO5			
Text B	ooks:					
1	Andrew, <i>R.Leach, Valerie J Gillet</i> , 2007. An Introduction to Revised Edition, Springer, Netherland.	Chemin	formatics,			
Reference Books:						
1	<i>Larsen</i> et al, 2004. Text book of Drug design and Discovery , [Fourth Edition]. London and New york, Taylor and Francis.					
2	<i>Graham L. Patrick</i> , 2009. An Introduction to Medicinal Chemistry, [Fourth Edition]. Oxford University Press.					

After completion of the course, the students will be able to

CO1	Know the concepts of drug design and discovery
CO2	Assess the prediction of drug identification and validation steps in drug discovery
CO3	Recall the retrosynthetic strategies for drug synthesis
CO4	Predict the processes in computer aided drug design
CO5	Cognize the quantum mechanical methods in principles and applications of drug design and discovery

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	М	L
CO2	Н	М	L	Н	Н
CO3	М	L	Н	L	М
CO4	L	М	Н	L	М
CO5	L	Н	L	М	Н

1000011	AD201	CORE PRACTICAL III : ORGANIC	SEMESTED II			
	VIF 201	PRACTICAL II				
COURS	E OBJE	CTIVES:				
The cou	rse aim	5				
• T	o have	practical skill on estimation and preparation of org	anic compo	ounds		
• T	o know	the techniques of extraction from natural products	Total has	1701 EQ		
Cleuits.	3		10141 1101	115: 50		
		CONTENTS		CO		
Organic	: Estima	ition				
Phenol						
Aniline						
Glucose				CO1		
Iodine value of an oil						
Saponification value of an oil.						
Organic	Prepar	ration				
1	Sym-tri	ibromobenzene from aniline.				
2	<i>m</i> -Nitr	obenzoicacid from methyl benzoate.				
3	para–N	itroaniline from acetanilide.		CO2		
4	Benzanilide from benzophenone.					
5	para-Aminobenzenesulphonamide from acetanilide					
Organic	Extract	tion				
1	Caffeir	ne from tea leaves.		CO_{2}		
2	Citric a	acid from lemon.		02		

Reference Books:					
	B.S. Furniss, A.J. Hannaford. P.W.G. Smith and Tatchell, A.R. 2003. Vogel's				
1	Practical Organic Chemistry . [Fifth Edition]. ELBS & Longman, New Delhi.				
2	Raj K. Bansal. 2008. Laboratory manual of Organic Chemistry. [Fifth Edition].				
	New Age International (P) Ltd, New Delhi.				

CO1	Able to estimate an organic compound
CO2	Capable to synthesize and extract various organic compounds

18PCH	MP202	CORE PRACTICAL IV:PHYSICAL PRACTICAL I SE	MESTER - II		
COURS	SE OBJE	ECTIVES:			
• 9	Students	have a practical skill on Experiments in chemical kinetic	s, phase rule,		
•]	Cnemica Fo study	the kinetics reactions practically			
•	Fo prac chemica	tically conduct Conductivity measurements by differents ls	ent types of		
Credits	: 3	Total F	Iours : 40		
EXPT NO.		CONTENTS	СО		
Titrime	etric Qua	antitative Analysis			
1	Study	the kinetics of acid hydrolysis of an ester.	CO1		
2	Molecular weight determination by Rast method.				
3	Determination of association factor of benzoic acid in benzene by distribution method				
4	Conductometric titrations of a mixture of acidsagainst Sodium hydroxide.				
5	Conductometric titrations of a weakacidagainst Sodium hydroxide.				
6	Determination of equivalent conductivity of a strong electrolyte at different concentrations.				
7	Detern KI & K	nination of the equilibrium constant of the reaction betwee $f_2S_2O_8$.	en CO2		
8	Study the phase diagram form- toluidine and glycerine system.				
9	Construction of phase diagram for a simple binary system(naphthalene –Phenanthrene and benzophenone – diphenylamine)				
10	Constr partial Water- Acetor	uction of the phase diagram of the three components ly immiscible liquid systems (DMSO – Water – Benzer Benzene – Acetic acid; Ethyl alcohol–Benzene–Water ne-Chloroform–Water; Chloroform – Acetic acid-Water).	of le; er; CO2		

Refere	ence Books:
1	<i>Venkateswaran V.</i> and <i>Kulandaivelu</i> A.R. 2012. Basic Principles of Practical Chemistry. [Second Edition]. Sultan Chand & Sons, New Delhi.
2	<i>Bassett J.et al.,</i> 1989. Vogel's Textbook of Quantitative Inorganic Analysis. [Fifth Edition]. ELBS Longman, New york.
3	<i>Bajpai D.N., Pandey O.P.</i> and <i>Giri S.</i> 2012. B.Sc., Practical Chemistry , Revised Edition. S. Chand & company, New Delhi.
4	<i>J.P. Singh</i> and <i>G.R. Verma</i> . 1999. Practical Chemistry Vol. I & II , Revised Edition. S. Chand & company, New Delhi.
5	<i>Thomas. A.O.</i> 2000. Practical Chemistry . [Sixth Edition]. Sharada Press, New Delhi.

CO1	Recognize various physical techniques and principles of kinetics
CO2	Estimate the conductometric titrations using different chemicals at various concentrations

SEMESTER - II

Credits	:: 2	Total H	Iours: 2
UNIT	CONTENTS	Hrs	СО
I	Human Rights: Definition - Historical Evolution - Classification of Rights - Universal Declaration of Human Rights - International Covenants on Economic and Social Rights - Constitutional Provision for Human Rights - Fundamental Rights - Directive Principles of the State Policy - Indian Constitution.	5	CO1
II	Civil and Political Rights: Right to Work - Right to Personal Freedom - Right to Freedom of Expression - Right to Property - Right to Education - Right to Equality-Right to Religion - Right to Form Associations and Unions - Right to Movement-Right to Family - Right to Contract - Right to Constitutional Remedies- Right to Vote and Contest in Elections - Right to Hold Public Offices-Right to Petition-Right to Information - Right to Criticise the Government-Right to Democratic Governance.	5	CO2
III	Economic Rights: Right to Work - Right to Adequate Wages - Right to Reasonable Hours of Work - Right to Fair Working Conditions - Right to Self Government in Industry - Customer Rights - Social and Cultural Rights - Right to Life - Right to Clean Environment.	5	CO3
IV	Women's Rights: Right to Inheritance - Right to Marriage - Divorce and Remarry -Right to Adoption - Right to Education - Right to Employment and Career. Advancement - Rights Relating to Dowry - Right for Equality - Right for Safe Working Conditions - Children's Rights - Right to Protection and Care - Right to Education - Issues Related with Infanticide - Street Children - Child Labour-Bonded Labour - Refugees Rights - Minority Rights - Dalit Rights-Tribal Rights-Nomads Rights.	5	CO4

VALUE EDUCATION: HUMAN RIGHTS

18PVE201

	Human Rights Violation: International, National, Regional					
	Level Organizations to Protect Human Rights - UNO - National					
	Commission for Human Rights - State Commissions - Non					
\mathbf{V}	V Governmental Organizations and Human Rights - Amnesty					
	Terrorism and Human Rights - Emergency and Human Rights -					
	Judiciary and Human Rights - Media and Human Rights - Police					
	and Human Rights.					
Reference Books:						

1	Paul	Singh.	Human	Rights	and	Legal	System.	Himalaya	Publishing
	Hous	e, New	Delhi.						

CO1	Understand the core principles of human rights philosophy
CO2	Know the importance and functions of human rights commission
CO3	Apply their rights for democracy, human rights and gender equality
CO4	Know the rights from the Governance, economic and social development through various Acts
CO5	Understand the right to information Act, rights for women, children, Nomads, refugees and various sector of people in our country

18PLS201		CAREER COMPETENCY SKILLS II	CAREER COMPETENCY SKILLS II SE		EMESTER – II	
COUR	SE OBJI	ECTIVES:				
The c	course ai	ms				
• [To enha	nce employability skills and to develop career compe	eten	cy.		
			Tot	al Hours	s: 15	
UNIT		CONTENTS		Hrs	CO	
Ι	Intervi Intervi langua Don'ts Intervi	ew Skills – Types of Interview – Groundwork before ew – Abide by the dress code – Importance of Body ge in Interviews – Tell Us about yourself – Do's and of an interview – Concluding an Interview – A Moc ew	, k	3	CO1	
II	Resum – The r Resum Classif Interpo	e Preparation – Difference between a Resume and C main body of Resume – The Career objective in ne – A Fresher's Resume – Antiquity of Soft Skills – fication of Soft Skills – Personality Analysis – ersonal Skills.	V	3	CO2	
III	Body I Group Do's an the Dis	Language – Emotion displayed by Body Language – Discussion – Group Discussion types – Guidelines nd Don'ts during a Group Discussion – Concluding scussion – The technique of Summing Up.		3	CO3	
IV	Speaki Skills - Listeni Barrier Indian Similar Couple	ng Skills – Effective Speaking Guidelines – Reading - Types of Reading Skills – Barriers to Speed Reading ang Skills – Stages of Listening – Types of Listening – rs to Listening – Beware of Pitfalls – Avoid Errors : isms in English – Most common errors in the world r but not Quite the same – Words that are Singular o e.	5 – - r	3	CO4	
V	Avoid Pitfalls: of Beware Self-improvement - Facilitating Laboratory: Language Techniques and Concepts E- learning			3	CO5	

Reference Book:		
1	S.P.Dhanavel. 2015, English and Soft Skills. [Second Edition]. Orient Black Swan	
I	Publishers, New Delhi.	

CO1	Understand the types of Interviews, Dress Code and Styles
CO2	Develop Resume content and structures.
CO3	Improve body language skills.
CO4	Know how to represent self through communication.
CO5	Attain the different level of Learning Skills.

18PCH	IM301 CORE VIII: ORGANIC CHEMISTRY III	SEMES	STER - III
COUR	SE OBJECTIVES:		
The cou	arse aims		
• To	o know about reactions like Oxidation, reduction and Pericy	clic reactio	ns
• To	study about reagents used in organic synthesis, and confe	rmational	analysis of
5	simple and substituted compounds, structure and stereoche	nistry of s	teroids.
• T	o know the chemistry of steroids in biological systems		
• To	o acquire knowledge about oxidation reduction reaction	s in vario	us organic
(compounds		
• To	o study about pericyclic reactions in organic compounds		
Credits	5:5	Total hou	ırs: 60
UNIT	CONTENTS	Hrs	CO
	Reagents in Organic Synthesis: Synthesis of organ	ic	
	molecules using acylation, alkylation of enamines ar	d	
	active methylene compounds. Robinson annulatio	۱,	
_	protection and deprotection of functional groups (R-OH, I	<-	
	CHO, RCOR, R- NH ₂ and R-COOH) Reagents and the	ir 12	COI
	synthetic uses: DCC, trimethylsilyl iodide, trimethylsil	71	
	chloride, 1,3– dithiane (umpolung), di isobutyl aluminiu	n	
	hydride (DIBAL), 9BBN,Osmium tetroxide, DDQ, Seleniu:	n	
	dioxide, Phase transfer Catalysts.		
	Conformational Analysis: Conformational analysis	of	
	cyclohexanes and acyclic (n-butane) systems, conformation	n	
	of simple 1,2 disubstituted derivatives-ethylei	le	
	chloronydrin and ethylene giycol, Conformational analys	IS Va	
П	$(12 \pm 12 \pm 14 \text{ dialkylayala havanas})$ conformation are	s a 12	CO2
	stereochemistry of cis and trans decaling effects	u ==	001
	conformation on reactivity in acyclic and cyclobexane	s	
	Oxidation and acylation of cyclohexanols, reduction	of	
	cyclohexanones, esterification and hydrolysis	of	
	cyclohexane carboxylic acid derivatives.		
	Steroids Structure and Stereochemistry of Cholestero	1.	
тт	Conformation of OH, double bond in Cholestered	l. 12	CO2
111	Reactions of Oestrone, Conversion of cholesterol in	0	03
	progesterone, testosterone and oestrone. Artifici	al	

	hormones-Stilboestrol and Hexoestrol.		
IV	Oxidation and Reduction Reactions: Oxidation of alcohols by CrO ₃ , DMSO and DMSO in combination with DCC; acetic anhydride and oxalyl chloride. Oxidation of arylmethane -oxidation of alpha methylene to carbonyl. Allylic oxidation of olefins, oxidative cleavage of glycols, oxidative cleavage of double bonds by ozonolysis. Reduction of carbonyl compounds by hydrides, selectivity in reduction of 4– ter – butyl cyclohexanone using selectrides. Reduction: Clemmensen- Wolff Kishner, Birch, MPV.	12	CO4
	Pericyclic Reactions: Pericyclic reactions, classification,		
	orbital symmetry, Woodward Hofmann rules, selection		
	rules and stereochemistry of electrocyclic reactions,		
V	cycloaddition and sigmatropic shifts, analysis by correlaton	12	CO5
	diagram method and Frontier molecular orbital method,		
	Sommelet, Hauser, Cope and Claisen rearrangements.		
	Perturbation Molecular Orbital theory		
Text Bo	ooks:		L
1	Jerry March. 1992. Advanced Organic Chemistry- Reactions, Mechanisms		nisms and
1	Structure , [Fourth edition], John Wiley &Sons, New York.		
2	Kalsi, P.S.2002. Organic Reactions and Mechanisms. [Seco	ond Edit	ion]. New
-	Age International Publishers, New Delhi.		
3	Finar, I.L. 2000. Organic Chemistry - Volume II. [5th Edi	ition]. Fi	rst Indian
	reprint. Pearson Education Ltd, London.		
4	Chatwal, G. 2014. Organic Chemistry of Natural Products - V	ol I&II. 1	Himalaya
	Publishing House, Mumbai.		
5	Mukherji, S.M. and Singh, S.P. 2009. Reaction Mechanism in	1 Organi	с
_	Chemistry . [Fifth Edition-reprint]. Macmillan Publishers, Lo	ndon.	

6	Jagadamba Singh, L. D. S Yadav Organic Synthesis, Pragati edition.
Referer	nce Books:
1	<i>Francis A.Carey.</i> 1996. Organic Chemistry. [Third Edition]. The McGraw Hill Companies, Inc, New York.
2	<i>Morrison, R.T.</i> and <i>Boyd, R.N.1992</i> . Organic Chemistry. [Sixth Edition]. Prenticemn Hall, New Delhi.
3	<i>Agarwal, O.P. 1988.</i> Chemistry of Organic Natural Products. Vol I &II. Goel Publishing House, Meerut.

	Recall the fundamental principles of organic chemistry that include chemical
CO1	bonding, structural isomerism, stereochemistry, chemical reactions and
	mechanism.
CO2	Develop basic skills for the multi-step synthesis of organic compounds and
	justify a reasonable mechanism for a chemical reaction.
CO3	Recognize the structure and function of vitamins, antibiotics, penicillin,
	streptomycin, chloromycetin, etc.,
CO1	Interpret the concept of aromaticity and the main properties of aromatic
004	compounds and evaluate stereochemistry in organic compounds.
CO5	Evaluate the concept of rearrangement reactions in organic compounds.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	Н	Н	L
CO2	L	Н	L	М	Н
CO3	М	L	Н	L	М
CO4	Н	М	М	Н	L
CO5	L	Н	L	М	Н

MAPPING:

18PCH	M302 CORE IX: INORGANIC CHEMISTRY III	SEME	STER-III
COURS	SE OBJECTIVES:		
The cou	urse aims		
•]	Γο inculcate information about the boranes, carboranes and m	etal clust	ers.
•]	Γο provide knowledge about the term symbol and energy lev	el diagran	n.
•]	To recognize the principles and applications of photoelectron	spectrosc	opy.
•]	Γο recognize the role of metals and ligands in biological syste	ns.	
•]	Го gain knowledge about the uses of IR and Raman in inorga	uic compo	ounds.
Credits	:5	fotal hou	rs: 60
UNIT	CONTENTS	Hrs	СО
Ι	Boron compounds and Clusters Boron hydrides - polyhedral boranes, hydroborateions - preparation, properties and structure - Wade's rule. Carboranes - types - preparation, properties and structure. Metallo carboranes - general study. Metal clusters – Structure of Re ₂ Cl ₈ .	12	CO1
Π	Electronic Spectra of Complexes Spectroscopic Term symbols for d ⁿ ions - derivation of term symbols and ground state term symbol, Hund'srule; Selection rules - break down of selection rules, spin-orbit coupling, band intensities, weak and strong field limits - correlation diagram; Energy level diagrams; Orgel and Tanabe-Sugano diagrams - effect of distortion and spin orbit coupling on spectra - Evaluation of Dq and B values for octahedral complexes of Nickel - Charge transfer spectra.	12	CO2
III	 Photoelectron Spectroscopy: Photoelectron Spectroscopy-Principle, Photoelectric effect - PES of diatomic molecules and polyatomic molecules (HCl, HBr, HI, CO, NH₃and H₂O); Core electron PES; X-ray photoelectron spectroscopy (ESCA) applications. Bioinorganic chemistry Metal ions in biological systems - 	12	CO4
IV	essential and trace metals, Na ⁺ /K ⁺ Pump; Biologically important complexes of Iron (transport proteins) - haemoglobin, myoglobin, iron-sulphur proteins,	12	CO5

	cytochrome C, Magnesium (chlorophyll), Cobalt (vitamin B ₁₂), Zinc (Carbonic anhydrase, carboxy peptidase) - macrocyclic effect - fixation of Nitrogen.		
V	Lanthanides and Actinides: Stable oxidation state – Lanthanide and actinide contraction – Difference between 4f and 5f orbital – Absorption spectra – Magnetic properties – Separation – Lanthanide Chelates. Clinical use of Lanthanum Carbonate.	12	CO5

Text B	ooks:
1	Huheey, J.E, Keiter, E.A and Keiter, R.L.2002. Inorganic Chemistry Principles of structure and reactivity. [Fourth edition]. Pearson Education, London.
2	Cotton F.A. and Wilkinson, G. 2007. Advanced Inorganic Chemistry. [Sixth Edition]. Wiley Eastern Co, New Delhi.
3	Drago, R.S.1992. Physical Methods in Chemistry. Reinhold, New York.
4	<i>Katja A. Strohfeldt</i> Essentials of Inorganic Chemistry, Wiley Publications.
Refere	nce Books:
1	<i>Bannerjea, D.</i> 2009. Coordination Chemistry . [Third edition] Asian publication, New York.
2	Muller.2006. Inorganic Structural Chemistry. [Fifth edition]Wiley, New York.
3	<i>Rao, C.N.R.</i> and Ferraro, J.R.1973. Spectroscopy in Inorganic Chemistry , vol-I, Academic press, MethvenCo, London.
4	<i>King, G.W.</i> 1964. Spectroscopy and Molecular Structure. Holt Rienehart and Winston. London.

After completion of the course, the students will be able to

CO1	Illustrate the structure of boranes, carboranes and metal clusters.
CO2	Determine the term symbol and energy level diagrams.
CO3	Apply the photoelectron spectroscopy of di and polyatomic molecule.
CO4	Describe the role of metal and complexes in biological systems.
CO5	Deduce the structure of simple molecule and ligands.

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	L
CO2	L	Н	М	L	Н
CO3	М	L	Н	Н	М
CO4	М	М	L	L	Н
CO5	Н	L	М	М	Н

18PCH	IEL301	ELECTIVE II : PHOTO CHEMISTRY	SEMES	TER - III
COUR	SE OBJI	ECTIVES:		
The cou	ırse aim	s		
• [To learn	about the principles of photochemistry in various	3 field lik	e organic,
i	inorgani	c and physical chemistry.		
• [To recog	nize the quantum yield of some important chemical c	compound	ls
• [To acqui	re knowledge about photochemistry about carbonyl o	compound	ds
• [To unde	rstand reactions of alkenes through photochemistry		
• [To recog	nize the reactions in aromatic compounds		
Credits	s: 4		Total hor	ırs: 40
UNIT		CONTENTS	Hrs.	СО
	Basics	of photochemistry - Energy of molecules -spin		
	multip	licity and Quantum yield, Laws of photochemistry -		
	Grotth	us-Draper law – Beer-Lambert's law – Stark-Einstein	,	
Т	Law.Ja	blonski diagram - Fluorescence and its life time-	8	CO1
	Phosp	noresence and its life time, Photochemical process -		001
	Prima	ry and Secondary process - Energy transfer -		
	Quenc	hing and defining its terms, Excimer, Exciplex – Inter		
	and In	tramolecular energy transfer – Photosensitisation.		
	Quant	um Yield - Experimental Determination - Light		
	soruce	s – Physical actinometers – Chemical actinometers –		
II	Stermy	volmer equation and its derivation – Quantum yield	8	CO2
	in pho	tochemical reaction - Hydrogen bromide, Hydrogen		
	iodide	, Hydrogen chloride. Chemiluminescence –		
	Photol	ysis – Gas phase photolysis.		
	Photoc	hemistry of carbonyl compounds – Electronic		
	transit	ion – Franck Condon principle – Types of excitation		
	– Mole	cular orbital view of excitation – Norrish Type I and		
III	Norris	h Type II- Cycloadditionreaction -Paterno-Buchi	8	CO3
	reactio	n, [2+2] cycloaddition. Rearrangement of carbonyl		
	compo	und – Lumiketone rearrangement, di-pi-methane		
	rearran	ngement, dienone-phenol rearrangement, oxa-di-pi-		

IV

	1,4 and 1,5 dienes - Rearrangement - Cope and Claisen			
	and <i>p</i> -Claisen – cycloaddition reactions – Sigmatropic			
	rearrangement.			
	Photochemistry of Aromatic compounds - Arene photo			
V	isomerisation - Photo dimerisation -Cycloaddition	Q	CO5	
v	reactions – 1, 2 cycloadditions – Photooxygenation – ene	0	005	
	reaction - Photosensitization.			
Text B	Text Books:			
1	Rohatgi, K.K. Mukherjee. 2002. Fundamentals of Photoch	nemistry	. [Revised	
1	edition]			
2	Coyle. J.D. 1986. Photochemistry in Organic Synthesis	. Royal	Society of	
2	chemistry.			
Reference Books:				
1	Robert A. Alberty 1997. Physical Chemistry. [6th Edition]. Wile	y Easterr	n Limited	
2	OleBuchard, T 1976. Photochemistry of heterocyclic co	mpound	ls . Wiley	
۷	International press.	-		
2	Charles H. Depuy, Orville, S Chapman.1988. Molecular Reaction	ns and		
3	Photochemistry, Pearson Education, Limited.			

After completion of the course, the students will be able to

CO1	Know the Outline of photochemistry
CO2	Illustrate the quantum yield of photochemical reaction
CO3	Predict the photochemistry of carbonyl and alkene compounds
CO4	Discuss the inorganic photochemistry reactions.
CO5	Recall the photochemistry of Aromatic compounds

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	L
CO2	L	Н	М	М	Н
CO3	М	L	Н	Н	М
CO4	М	М	L	L	Н
CO5	L	L	L	М	Н

18PCHEL302 ELECTIVE II:BIO-INORGANIC CHEMISTRY II SEMESTER - III

COURSE OBJECTIVES:

The course aims

- To understand the importance of inorganic compounds in medicinal chemistry
- To gain knowledge about essential trace elements in biological systems
- To estimate the vitality of chemicals in gastro intestinal tracks
- To know about chemicals that are important as electrolytes
- To evaluate the chemistry of radioactive chemicals in dosimetry

Credits: 4 Total hours: 40 UNIT **CONTENTS** Hrs CO Essential and trace Elements in Biological Systems: Structure and functions, effect of metal deficiency. Toxicity: mercury, cadmium, lead, beryllium, selenium and arsenic. Chelation therapy: Metals used for diagnosis and T 8 CO1 chemotherapy. Crown ether complexes of Na+ and K+ -ATP and ADP. Platinum complexes as anticancer drugs.Pt-DNA binding, complexes of gold, copper, zinc, mercury, arsenic and antimony as drugs. Topical Agents: Protectives - Calamine, Talc, Zinc Oxide, Zinc Stearate, Titanium dioxide, Silicon Polymers and Dimethicone. Astringents - Zinc sulphate, Alum. Antiinfectives - Boric acid, Hydrogen peroxide, Iodine, Π 8 CO₂ Potassium permanganate, Chlorinated Lime.Dental Products - Anti-caries Agents -Role of Fluorides as anticaries agents, Sodium fluoride. Dentifrices - Calcium carbonate, dibasic calcium phosphate, Zinc chloride. Gastro-intestinal agents: Acidifiers and Antacids - Dilute hydrochloric acid, sodium acid phosphate, sodium bicarbonate, aluminium hydroxide gel, dried aluminium hydroxide gel, magnesium oxide (Magnesia), magnesium Ш 8 CO3 hydroxide mixture, magnesium trisilicate. Adsorbents and related drugs - Light kaolin, heavy kaolin, and activated charcoal. Laxatives - Magnesium sulphate, sodium phosphate. IV Electrolytes: Major intra and extra cellular electrolytes -8 CO₄

	Physiological role of Chloride, Phosphate, Bicarbonate,			
	Sodium, Potassium, Calcium and Magnesium. Electrolytes			
	used for replacement therapy - Sodium chloride,			
	Potassium chloride, Calcium chloride, Calcium lactate,			
	Tribasic calcium phosphate; Physiological acid-base			
	balance: Sodium dihydrogen phosphate, Sodium acetate,			
	Sodium bicarbonate and their importance; Dialysis fluids -			
	Haemodialysis fluids.			
	Inorganic Radio-Pharmaceuticals: Radioactivity, Units of			
	radioactivity, radiation dosimetry, Measurement of			
	radioactivity, Hazards and precautions in handling of			
V	radiopharmaceuticals, storage, radio pharmaceutical	8	CO5	
	preparations and standards of radioactive material iodine-			
	131 (I ¹³¹), Cobalt -58 (Co ⁵⁸). Radio opaque contrast medium			
	-barium sulphate.			
Text B	ooks:	<u> </u>		
	Artherden, L.M. Bentley and Driver's, 2003. Textbook of	of Phari	naceutical	
1	Chemistry , [Eighth edition]. Oxford University Press, New Delhi. 2003.			
	Block, J.H. Roche, Soine, E.T.O. and Wilson, C.O. 1986. Inorg	ganic Me	edicinal &	
2	Pharmaceutical Chemistry, [First edition], Varghese	publishir	ng house,	
	Mumbai.			
3	Rao, K.S. and Suresh, C.V. 2011. Pharmaceutical Inorganic C	Chemistr	y , Pharma	
3	Med Press.			
4	Kasture, A.V. Wadodkar, S.G. 2008. Pharmaceutical Chemist	ry-I , [Tw	venty Fifth	
4	edition]. Nirali Prkashan.			
5	Rajasekaran, V. N. 2005. Text Book of Pharmaceutical Inc	organic	Chemistry	
5	Theory and Practical, [Second edition]. Sun Publication, Che	nnai.		
Refere	nce Books:			
1	Chatwal, 2007. Pharmaceutical Chemistry Inorganic, [Third of	edition].	Himalaya	
1	publishing house, Mumbai.	-	, c	
2	Miessler, G.L. and Tarr, D.A. 2005. Inorganic Chemistry, Pearso	on Educa	ition.	
	, , ,			
3	Cowan, J. A.1997. Inorganic biochemistry, Wiley-VCH, New Y	ork.		

After completion of the course, the students will be able to

CO1	Recall the essential and trace elements in biological systems
CO2	Estimate the topical agents and its role in biological system
CO3	Demonstrate the chemical compounds as gastro intestinal agents
CO4	Predict the role of chemical compounds as electrolytes
CO5	Assess the utilization of inorganic Radio-Pharmaceuticals

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	L	L	М
CO2	М	L	Н	М	L
CO3	L	М	М	Н	L
CO4	М	Н	Н	Н	Н
CO5	Н	L	М	L	М

18PCH	EL303 ELECTIVE II:POLYMER CHEMISTRY II	SEMES	STER - II
COUR	SE OBJECTIVES:		
The cou	arse aims		
•	To know the basic concepts of polymer, coordination in	polymer,	properties
(of commercial polymers and polymer processing		
• [To gain knowledge about Coordination polymerization ar	d the cat	alysts that
	enhances		
• [To recognize the properties of polymer and its measurements	3	
• [To understand the processing of polymers and its types		
• [To cognize the properties and chemistry behind commercial	polymers	
Credits	s: 4	Total hou	rs: 40
UNIT	CONTENTS	Hrs	СО
Ι	Dendrimers and hyper branched polymers: Properties of Dendrimers and Hyper branched Polymers and their Blends: Dendrimers and their structure, synthesis of Dendrimers, Hyper branched Polymers and their structure. Synthesis of hyper branched polymers, branching and polydispersity, conformation, general concepts of polymer blends. Blends of Dendritic polymers with thermoplastics.	8	CO1
II	Polymer nano composites Polyamide/clay nano composites- Synthesis, characterization and properties of Nylon 6-clayhybrid. Polystyrene/clay nano composites- Surface initiated polymerization, syndiotactic polystyrene/ clay nano composites, properties. Poly(butylenes terephthalate) (PBT) based nano composites, Epoxynano composites on layered silicates. Polypropyelene layered silicate nano composites.	8	CO2
III	Synthesis of Biomedical polymers for drug delivery Polymers as biomaterials, biomedical applications o synthetic polymers, synthetic polymers for biomedica applications, poly(α-hydroxyesters), poly(lactic acid) poly(anhydrides), poly(phosphazenes), controlled drug	ř 1 8 ,	CO3

	delivery, methods of drug delivery		
IV	Conducting polymers Correlation of chemical structure and electrical conductivity. Structure of conducting polymers Polyacetylene, polypyrrole, polythiophene, polyanilines, p-phenylene sulphide, polyphenylene vinylene. Different methods of synthesis of polyaniline. solution polymerization, interfacial polymerization, electrochemical systhesis, enzyme synthesis and photo induced polymerization of aniline. Applications of conducting polymers: Membranes and ion exchanger, corrosion protection, gas sensors, biosensors, electrocatalysis.	8	CO4
V	Engineering plastics Acrylonitrile butadiene styrene (ABS), Polycarbonates (PC), Polyamides (PA), Polybutylene terephthalate (PBT), Polyethylene terephthalate (PET), Polyphenylene oxide (PPO), Polysulphone (PSU), Polyetherether ketone (PEEK). Polyimides, Polyphenylene Sulphide (PPS), Syntheticroute, structure, properties and uses.	8	CO5
Text B	ook:		
1	Gabriel, O. Shonaike & Suresh G. Advani, 2003. Advanced p materials, CRC press.	olymeri	с
Refere	nce Books:		
1	<i>Allcock, H. R</i> and <i>Lamber, F.W.</i> 2004. Contemporary Polymer C [Third Edition]. Prentice Hall, New Delhi.	Chemistry	y.
2	<i>Flory, P. J.</i> 1995. Principles of Polymer Chemistry . reprint].Cornell University press, NewYork.	[First e	dition-16 th
3	<i>Odian, G. 2007.</i> Principles of Polymerization . [Fourth Edition Sons, New York.]. John V	Viley &

After completion of the course, the students will be able to

CO1	Recall the basic concepts and types of polymers
CO2	Understand the role of catalyst and techniques of polymerization
CO3	Know about the properties and measurement of molecular weights
CO4	Estimate the processing techniques of polymer
CO5	Demonstrate the properties of commercial polymers

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	L	М	Н	L
CO2	L	М	Н	М	L
CO3	L	Н	М	L	М
CO4	М	L	Н	Н	L
CO5	М	Н	L	М	L

18PCHMP301		CORE PRACTICAL V:INORGANIC PRACTICAL SE		EMESTER -III	
COURS	COURSE OBJECTIVES:				
The cou	arse aims				
•]	Го prov	ide practical skills in quantitative analysis of co	mplex	materials	
Ę	gravimet	rically			
•]	Го train t	he students to prepare inorganic complexes by laborate	ory met	thods	
Credits: 3 Total Hours : 50					
EXPT NO.	CONTENTS			СО	
Quanti	tative an	alysis of complex materials			
1	Copper	and nickel			
2	Copper	and Zinc	CO1		
3	Iron and	d nickel COI			
4	Calciun	Calcium and magnesium			
Inorgar	Inorganic Preparations				
1	Sodium	n hexa nitro cobaltate(III)			
2	Sodium	n Tris oxalateferrate(III)			
3	Prussia	nblue Fe ₄ [Fe(CN) ₆] ₃			
4	Bis(ace	ylacetanato)Copper(II)		02	
5	Hexam	Hexamminecobalt(III) chloride			
6	Hexam	minenickel(II)chloride			

Reference Books:				
1	<i>Venkateswaran V.</i> and <i>Kulandaivelu</i> A.R. 2012. Basic Principles of Practical Chemistry. [Second Edition]. Sultan Chand & Sons, New Delhi.			
2	<i>Bassett J.et al.,</i> 1989. Vogel's Textbook of Quantitative Inorganic Analysis. [FifthEdition]. ELBS Longman, New York.			
3	<i>Bajpai D.N., Pandey O.P.</i> and <i>Giri S.</i> 2012. B.Sc., Practical Chemistry , Revised Edition. S. Chand & company, New Delhi.			
4	<i>J.P. Singh</i> and <i>G.R. Verma</i> . 1999. Practical Chemistry Vol. I & II , Revised Edition. S. Chand & company, New Delhi.			
5	<i>Thomas. A.O.</i> 2000. Practical Chemistry . [Sixth Edition]. Sharada Press, New Delhi.			

CO1	Estimate metals and transition metals gravimetrically
CO2	Able to prepare inorganic compounds by laboratory methods

18PCHMP302		CORE PRACTICAL VI: PHYSICAL PRACTICAL II SEME		TER - III		
COURSE OBJECTIVES:						
The cours	The course aims					
Students have a practical skill on experiments in chemical kine						
electrochemistry and polarography						
• To	o acqui	re practical knowledge about kinetics				
Credits: 3	3	Tot	al Hours :	50		
EXPT NO.	CONTENTS					
1	Determination of the activity coefficient of an electrolyte at different			CO2		
	molalities by emf measurements					
2	Determination of the dissociation constant of a weak acid.			CO1		
3	Estimation of KCl by potentiometric titration.			CO2		
4	Determination of the pH of a given solution by emf method.			CO1		
5	Potentiometric titration of Strong acid vs Strong base			CO2		
6	Determination of the strength of given Ferrous Ammonium Sulphate by potentiometric titration			CO1		
7	Determination of the electrode potentials of Ag electrode.			CO2		
8	Iodination of Acetone					
9	Primary salt effect			CO1		
10	Adsorption of Oxalic acid on Charcoal					
Refere	ence Books:					
--------	--					
1	<i>Venkateswaran V.</i> and <i>Kulandaivelu</i> A.R. 2012. Basic Principles of Practical Chemistry. [Second Edition]. Sultan Chand & Sons, New Delhi.					
2	<i>Bassett J.et al.,</i> 1989. Vogel's Textbook of Quantitative Inorganic Analysis. [Fifth Edition]. ELBS Longman, New York.					
3	<i>Bajpai D.N., Pandey O.P.</i> and <i>Giri S.</i> 2012. B.Sc., Practical Chemistry , Revised Edition. S. Chand & company, New Delhi.					
4	<i>J.P. Singh</i> and <i>G.R. Verma.</i> 1999. Practical Chemistry Vol. I & II, Revised Edition. S. Chand & company, New Delhi.					
5	<i>Thomas. A.O.</i> 2000. Practical Chemistry . [Sixth Edition]. Sharada Press, New Delhi.					

After completion of the course, the students will be able to

CO1	Recognize various physical techniques and principles of physical chemistry
CO2	Able to evaluate the principles of photochemistry through potentiometric techniques

18PPHCHI301	IDC I: SOLID STATE PHYSICS	SEMESTER – III
COURSE OBJECT	ΓIVES:	
The course aims		
• To impart 1	knowledge on the structure of crystals. X-i	av diffraction and theorie

- To impart knowledge on the structure of crystals, X-ray diffraction and theories of Magnetism.
- To provide basic concepts regarding dielectrics and modern engineering materials.

Credits: 4	Credits: 4 T		
UNIT	CONTENTS	Hrs	СО
Ι	Introduction to crystal systems: Crystal Lattice - Unit cell - Seven classes of crystals - Bravais lattice - Miller indices - Structure of crystals - Simple cubic structure - Hexagonal close packed structure - Face centered cubic structure - Body centered cubic structure - Sodium chloride structure - Zinc blende structure - Diamond structure.	9	CO1
II	X-ray diffraction and crystal defects : Diffraction of X- rays by crystals - Bragg's law in one dimension - Experimental method of X-ray diffraction - Laue method - Rotating crystal method - Powder photograph method - Point defects - Line defects - Surface defects - Volume defects - Effects of crystal imperfections.	9	CO2
III	Theory of magnetism: Different types of magnetic materials - Classical theory of diamagnetism (Langevin'stheory) - Langevin's theory of paramagnetism - Weiss theory of paramagnetism - Qualitative explanation of Heisenberg's internal field and quantum theory of ferromagnetism.	9	CO3
IV	Dielectrics: Fundamental definitions in dielectrics - Different types of dielectric polarization - frequency and temperature Effects on polarization - Dielectric loss - Qualitative study of local field or internal field - Clausius-Mossotti relation - Determination of dielectric constant - Dielectric breakdown - Properties of different types of insulating materials.	9	CO4

V	Modern engineering materials: Polymers – Plastics – Ceramics – Super strong materials – Cermets - High temperature materials – Thermo electric materials – Pizoelectric and pyroelectric materials –Electrets – Nuclear engineering materials - Metallic glasses – Optical materials –Fiber optic materials and uses - Super conductors - Properties - Types and applications– Shape	9	CO5	
	memory alloys.		1	
Text B	ooks:			
1	<i>Arumugam, M.</i> 2008. Materials Science. [Third Edition]. Anu Publications, Kumbakonam.	radha		
Refere	nce Books:		·	
1	<i>Kittel, C.</i> 1996. Introduction to Solid State Physics. [Seventh Edition]. John Wiley & Sons (Asia) Pvt. Ltd., New Delhi.			
2	<i>Pillai, S.O.</i> 2005. Solid State Physics. New Age International, New Delhi.			
3	<i>Rita John.</i> 2014. Solid State Physics. McGraw Hill Education (India) Private Limited, New Delhi			
4	Saxena, B.S., Gupta, R.C. and Saxena. P.N. 2015. Solid State Edition]. Pragati Prakashan, Meerut.	Physics	. [Twelfth	
Web R	leferences:			
1	https://ocw.mit.edu/courses/physics/			
2	http://nptel.ac.in/courses/115105099/			
3	https://www.khanacademy.org			
4	https://epgp.inflibnet.ac.in/ahl.php?csrno=28			

After completion of the course, the students will be able to

CO1	Explain the concepts crystal and structure			
CO2	Describe the different types of X-ray diffraction methods and crystal defects			
CO3	Describe the theories about magnetic materials			
CO4	Know the fundamentals of dielectric materials and their behavior			
CO5	Evaluate the properties and applications of various modern engineering materials			

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	Н	Н
CO2	М	М	М	Н	Н
CO3	L	М	М	L	М
CO4	L	М	L	L	М
CO5	М	Н	М	М	М

H-High M-Medium L-Low

SEMESTER - IV

The cou	The course aims					
•]	To impart knowledge about various techniques which are use	d in chei	nistry like			
C	colorimetric, voltammetry and Mass spectra etc.					
•]	To know the different analytical techniques for inorganic chem	icals				
•]	To analyze the electrochemical methods, their principles and a	pplicatio	ns			
•]	To recognize the chromatographic techniques, its principles an	d applica	ations			
•]	To acknowledge the surface characterization techniques for	r particle	es and its			
i	nstrumentation					
Credits	:5 7	fotal hou	ırs: 50			
UNIT	CONTENTS	Hrs	CO			
	Data Analysis: Errors in chemical analysis - Defining					
	terms: Mean median, accuracy, precision and significant					
	figures - classification of errors: Systematic errors and					
Ι	random errors. Improving accuracy of analysis - mean,	10	CO1			
	standard deviation and Q-test. Comparison of results -					
	Least square (regression and correlation) students' t-test, f-					
	test and Chi square test.					
	Techniques in Inorganic Chemistry: Colorimetry:					
	Theoretical and practical aspects of colorimetric analysis.					
	Atomic spectroscopy – Principle – Types of atomic					
т	spectroscopy – emission methods – absorption methods –	10	CO2			
11	fluorescence methods; Instrumentation of atomic	10	002			
	absorption and atomic emission spectroscopy - Application					
	atomic spectroscopy. Flasma sources - Atomizers for					
	atomizers					
	Electrochemical Methods of Analysis : Cyclic Voltammetry					
	and coulometery including constant current and controlled					
	potential coulometery – principle, Experimental set-up and					
III	applications. Thermal Characterization techniques-	10	CO2			
	Principle, instrumentation and applications of Differential	10	005			
	Thermal Analysis (DTA), Differentials Scanning					
	Calorimetry (DSC) and Thermogravimetric Analysis (TGA)					
	Thermometric titration					

CORE X: ANALYTICAL CHEMISTRY

18PCHM401

COURSE OBJECTIVES:

IV	Chromatographic methods: Classification – techniques and applications - column, ion exchange, paper and thin layer chromatography. Gas chromatography and high performance liquid chromatography (HPLC) – principle, equipment design, sample injection system, columns, detectors and applications	10	CO4		
V	SurfaceCharacterizationtechniques-instrumentationand applications of X-ray diffractionanalysis(XRD), scanningelectronmicroscopy(SEM),Transmissionelectronmicroscopyfluorescencespectroscopy(AFM)andParticlesizeanalyzer(PSA).	10	CO5		
Text B	ooks:				
1	<i>Skoog, D.A</i> and <i>West,</i> D.M. 2013. Fundamentals of Analytical Chemistry . [9 th Edition]. Holt Rinehart and Winston Publications, London.				
2	<i>Vogel, A.I.</i> 2012. Text Book of Quantitative Inorganic Analysis. [Seventh edition]Pearson Education, London.				
3	Drago, R.S., 1996. Physical Methods in Chemistry. Reinhold, New York.				
Refere	nce Books:				
1	1 <i>Christian, G.D.</i> 2003. Analytical Chemistry . [Sixth Edition]. Allyn and Bacon Inc, London.				
2	<i>Skoog, D.A.</i> 2014. Principles of Instrumental Analysis . [Sevent Edition].Saunders College Pub. Co, New Delhi.	th			
3	<i>Dick, J.G.</i> 1974. Analytical Chemistry [5 th Edition]. McGraw Hill Publishers, New York.				

After completion of the course, the students will be able to

CO1	Know the basic concepts of errors in chemical analysis and accuracy of analysis
CO2	Demonstrate the principle, instrumentation and application of atomic spectroscopy
CO3	Illustrate the cyclic voltammetry, coulometry and thermal characterization techniques.
CO4	Recognize the chromatographic and surface characterization techniques.
CO5	Recall the characterization techniques in the study of surface of particles

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	L
CO2	L	Н	М	М	Н
CO3	М	L	Н	Н	М
CO4	М	М	L	L	Н
CO5	L	L	L	М	Н

H-High M-Medium L-Low

18PCHM402CORE XI: PHYSICAL CHEMISTRY IIISI

SEMESTER -IV

COURSE OBJECTIVES:

The course aims

- Have extended knowledge of quantum chemistry
- To gain knowledge about detailed knowledge about surface chemistry
- Estimate the principles of kinetics and various techniques to study the kinetics of reaction
- To study the principles and applications of ESR and Mossbauer spectroscopy
- To recognize the chemistry of cells, their principles and applications

Credits	its: 5 Total ho		
UNIT	CONTENTS	Hrs	CO
Ι	 Chemical Kinetics-III: Kinetics of complex reactions-reversible reactions, consecutive reactions-Parallel reactions and Chain reactions- Chain length- Rice Herzfeld mechanism- explosion limits. Study of Fast reactions: Temperature and pressure jump methods, stopped flow technique and flash photolysis. 	10	CO1
Π	QuantumChemistry-III:Theoryofchemicalbonding-Born-Oppenheimerapproximation-LCAO-MOapproximationforhydrogenmoleculeionandHydrogen-ValenceBondtheoryofHydrogenmoleculeionandHydrogen-ComparisonofMOandVBtheories-ConceptofHybridization-sp,sp ² andsp,sp ² andsp,sp ² andsp,sp - (Ethylene, butadiene and benzene)	10	CO2
III	ESR Spectroscopy - ESR spectrum of an unpaired electron- hyperfine structure in ESR spectra- selection rule-hyperfine coupling constant-Spin densities-McConnell equation-g factor and coupling constants-application of ESR. Mossbaur Spectroscopy - Basic principles of NRS spectroscopy- Mossbauer experiment- theory-chemical shift-Nuclear electric quadrupole splitting-Nuclear Zeeman splitting.	10	CO3

	Kinetics of surface reactions: Physical and chemical adsorption – adsorption isotherms – Langmuir adsorption				
	isotherm–B.E.T theory for multilayer adsorption –				
	measurement of surface area - Mechanism of heterogeneous				
IV	catalytic reactions- the adsorption coefficient and its significance.	10	CO4		
	Acid-Base catalysis - Mechanism - Bronsted catalysis Law -				
	catalysis by enzymes-rate of enzyme catalyzed reactions – effect				
	of substrate concentration, pH and temperature on enzyme				
	catalyzed reactions – inhibition of enzyme catalyzed reactions.				
	Electrochemistry II: Corrosion-basic principles- construction of				
	Pourbaix diagram - Prevention of Corrosion- Passivation of				
V	metals-corrosion inhibitors. Electrochemical energy systems -	10	CO5		
	Primary and Secondary batteries – Dry cells, Lead Acid. Storage				
	batteries, silver-zinc cell, nickel-cadmium battery, mercury cell –				
	Fuel cells – Electrodeposition – Principles and applications.				
Text Books:					
1	<i>Gurudeepraj.</i> 2014. Advanced Physical Chemistry. Goel Publishing I Meerut.	House	,		
2	Laidlar, K.J.1987. Chemical Kinetics. [third edition] Harper and Row	v, Nev	v York.		
3	<i>Prasad R. K.</i> 2014. Quantum Chemistry . [Fifth Edition]. New age pu Delhi.	blishe	r. New		
4	Drago, R.S. 1996. Physical Methods in Chemistry. Reinhold, New Yo	ork.			
5	Sindhu, P.S.2011.Fundamentals of molecular spectroscopy. [Second	leditio	on].		
	New Age International (P) Ltd, Publishers, New Delhi.				
Refere	nce Books:				
1	Chandra. A.K. 2010. Introductory Quantum Chemistry. [Fourth editi	on].Ta	ita		
	McGraw Hill, New Delhi.				
2	Mc Quarri, D.A.2007. Quantum Chemistry. [Second edition]. Univer-	rsity S	cience		
	Books. Mill Valley, California.				
	Barrow, G.M. 1962. Introduction to Molecular Spectroscopy, McGra	w Hil	l, New		
3	York.				

After completion of the course, the students will be able to

CO1	Predict the basic concepts of errors in chemical analysis and accuracy of analysis
CO2	Discuss the principle, instrumentation and application of atomic spectroscopy
CO3	Illustrate the cyclic voltammetry, coulometry and thermal characterization techniques.
CO4	Recognize the chromatographic and surface characterization techniques.
CO5	Recall the electrochemical techniques and commercial usage of cells

MAPPING:

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	L
CO2	L	Н	М	М	Н
CO3	М	L	Н	Н	М
CO4	М	М	L	L	Н
CO5	L	L	L	М	Н

H-High M-Medium L-Low

GUIDELINES

1. Submission of record note books and project dissertation:

Candidates appearing for Practical Examinations and Project Viva-voce shall submit Bonafide Record Note Books/ Record or Thesis prescribed for Practical/ Project Viva-voce Examinations, otherwise the candidates will not be permitted to appear for the Practical/ Project Viva-voce Examinations.

2. Passing Minimum and Internal Mark Distribution (Theory, Practical and Project)

(i) Theory

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Theory paper with a passing minimum of 38 marks in External out of 75.

Internal Marks Distribution [CA- Total Marks: 25]

	•
Attendance	: 5 Marks
Assignment	: 5 Marks
Seminar	: 5 Marks
Internal Examinations	: 10 Marks
Total	: 25 Marks
1	

(ii) Practical

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Practical paper with a passing minimum of 30 marks in External out of 60.

Internal Marks Distribution [CA- Total Marks: 40]

Total	: 40 Marks
Internal Examinations (2)	: 20 Marks
Record	: 5 Marks
Attendance	: 5 Marks
Experiment	: 10 Marks

External Marks- 60

Marks distribution given under each practical depends upon the experiments

(iii) PROJECT WORK/DISSERTATION (18PCHPR401)

- The project work shall be carried out by each student in the IV semester and has to complete the work at the end Semester.
- Upon completion of the project work/dissertation, the candidate will be required to appear for a viva-voce conducted by an external examiner.

- The Student has to attend 3 reviews before completing his/her Project.
- A candidate failing to secure the prescribed passing minimum in the dissertation shall be required to re-submit the dissertation with the necessary modifications.

Mark Distribution Pattern

Total	: 200 Marks
Continuous Assessment (CA)	: 50 Marks
Comprehensive Examination (CE)	:150 Marks

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 100 marks put together out of 200 in the Comprehensive Examination in each Project with a passing minimum of 75 marks in External out of 150.

Internal Mark Distribution[CA - Total Marks: 50 Marks]

 Research work done Attendance 	: 20 Marks : 5 Marks
3. Observation Note	: 10 Marks
4. Reviews (3 reviews)	: 15 Marks
Total	: 50 Marks

(iv) CAREER COMPETENCY SKILLS

o On Line Objective Examination (Multiple Choice questions) – Semester I

- 100 questions-100 minutes
- Twenty questions from each UNIT.
- On line examination will be conducted at the end of I Semester.

o Viva Voce - Semester II

- The student has to come in proper dress code and he/she should bring 2 copies of resume for the Viva Voce
- The student may be asked to
 - Give Self introduction
 - Submit the resume to the examiner(s) and answer the questions based on it.
 - Speak on any given topic for at least two minutes.
 - Give a presentation for 10 minutes on a topic of their choice.
 - Sit with other students in a group for a discussion.

Core Practical I: Organic Chemistry Practical I (18PCHMP101) Organic analysis

0 5	
Separation	: 5 marks
Aromatic/Aliphatic	:4 Marks
Saturated/Unsaturated	:4 Marks
Special elements $(N/S/X)$):6 Marks
Function groups	: 10 Marks
Derivative	: 6 Marks
Organic Preparation	
Crude preparation	: 5 Marks
Recrystallization	: 10 Marks
Viva - voce examination	: 10 Marks
Total marks	: 60 Marks

Core Practical II: Inorganic Chemistry Practical I (18PCHMP102) Inorganic analysis

0	
Group separation	: 10 Marks
Cations confirmation	(4x5) : 20 Marks
Inorganic Preparation	
Crude preparation	: 10 Marks
Recrystallization	: 10 Marks
Viva - voce examination	: 10 Marks
Total marks	: 60 Marks

Core Practical III: Organic Chemistry Practical II (18PCHMP201)

Organic estimation	: 30 Marks
Results	: 5 Marks
Organic Preparation:	
Crude preparation	: 05 Marks
Recrystallization	: 10 Marks
Viva - voce examination	: 10 Marks
Total marks	: 60 Marks
Total marks Percentage of error allowed ir	: 60 Marks n Results
Total marks Percentage of error allowed in 0-2% -30 marks	: 60 Marks n Results
Total marks Percentage of error allowed in 0-2% -30 marks 2-3% -25 marks	: 60 Marks n Results
Total marks Percentage of error allowed in 0-2% -30 marks 2-3% -25 marks 3-4% -20 marks	: 60 Marks n Results

>5% -10 marks

Core Practical IV: Physical Chemistry Practical I (18PCHMP202)

Formula, Table & Model graph	: 20 marks
Experiment	: 40 marks
Total marks	: 60 Marks

Experiment which is done using instrument, the instrumental error also included and then error calculated based on the precise of the instrument by examiners at the examination.

Core Practical V:Inorganic Chemistry Practical II (18PCHMP301)

Qualitative analysis	: 40 marks
Crude Preparation	: 05 marks
Crystallization	: 10 marks
Results	: 5 marks
Total marks	: 60 Marks
Percentage of error allowed in	Results
0-2% -40 marks	
2-3% -35 marks	
3-4% -30 marks	
4-5% -25 marks	
>5% -10 marks	

Core Practical VI: Physical Chemistry Practical I (18PCHMP302)

Formula, Table & Model graph	: 20 marks
Experiment	: 40 marks
Total marks	: 60 Marks

Experiment which is done using instrument, the instrumental error also included and then error calculated based on the precise of the instrument by examiners at the examination.

2. Question Paper Pattern and Mark Distribution Theory

Question Paper Pattern and Mark Distribution(For 75 marks)

- PART A (5 x 5 = 25 Marks) Answer ALL questions One question from each UNIT with Internal Choice
- 2. PART B (5 x 10 = 50 Marks) Answer ALL questions One question from each UNIT with Internal Choice