MASTER OF SCIENCE (MATHEMATICS)

VISION

To produce graduates with analytical and logical thinking and nurture them with the latest developments of mathematical knowledge and to enhancethe talents to meet global needs.

MISSION

- To transform students into competent and motivated professionals with sound theoretical and practical knowledge.
- To make students aware of technology to explore mathematical concepts through activities and experiments.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO 1:** To strengthen the knowledge in mathematical concepts and principles for striving towards research.
- **PEO 2:** To enhance their professional career through lifelong learning
- **PEO 3:** To apply the concepts of mathematics in real life situations and in problem solving

PROGRAMME OUTCOMES (PO)

After completion of the programme, the graduates will be able to

- **PO 1:** Demonstrate the knowledge in the subject of Mathematics and apply the laws and theorems to meet the needs of the society.
- **PO 2:**Gain analytical skills in the field of abstract mathematics
- **PO 3:** Innovate, invent and solve complex mathematical problems using the knowledge of pure and applied mathematics.
- **PO 4:** Explain the knowledge of various facts in the field of Mathematics and applied sciences.
- **PO 5:** Crack lectureship and fellowship exams approved by UGC like CSIR-NET and SET.

PROGRAMME SPECIFIC OUTCOMES (PSO)

After completion of the programme, the graduates will be able to

- **PSO 1:** Provide a systematic understanding of core mathematical concepts, principles and theorems along with their applications.
- **PSO 2:** Inculcate the problem-solving skillin pure and applied mathematics independently.
- **PSO 3:** Develop proficiency in the analysis of complex mathematical problems and the use of mathematical or other appropriate techniques to solve them.
- **PSO 4:** Outline exact, approximate, analytical and numerical methods for solving linear and non-linear equations encountered in various fields.

PSO 5: Demonstrate an appropriate level of expertise in algebra, analysis and applied mathematics.

REGULATIONS

ELIGIBILITY

A candidate who has passed B.Sc., (Mathematics) / B.Sc., (Mathematics with Computer Applications) degree of this University or any of the above degree of any other University accepted by the Syndicate equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the Master of Science (M.Sc.,) Degree Examination in Mathematics of this University after a course of study of two academic years.

DURATION OF THE PROGRAMME

The programme shall extend over a period of two years comprising of four semesters with two semesters in one academic year. There shall not be less than 90 working days for each semester. Examination shall be conducted at the end of every semester for the respective subjects.

MAXIMUM DURATION FOR THE COMPLETION OF THE PG PROGRAMME

The maximum duration for completion of the PG Programme shall not exceed 8 semesters.

FirstSemester							
		Hrs	Exam.	Μ	ax.m	arks	
Subject Code	Subject	of Instru ction	Duration (Hours)	CA	CE	Total	Credit Points
	Pa	rt A					
18PMAM101	Core I: Linear Algebra	6	3	25	75	100	5
18PMAM102	Core II: Real Analysis	5	3	25	75	100	4
18PMAM103	Core III: Mechanics	6	3	25	75	100	4
18PMAM104	Core IV: Ordinary Differential Equations	5	3	25	75	100	4
18PMAM105	Core V: Graph Theory	5	3	25	75	100	4
18PMAMP101	Core Practical I:	2	3	40	60	100	2
	Mathematical Text Editor						
	Latex						
		- Credit			-		
18PLS101	Career Competency Skills I	1					
	Total	30				600	23
Second Seme							
	Pa	rt A			l	1	
18PMAM201	Core VI: Algebra	6	3	25	75	100	5
18PMAM202	Core VII: Topology	6	3	25	75	100	5
18PMAM203	Core VIII: Measure Theory and Integration	5	3	25	75	100	4
18PMAM204	Core IX: Partial Differential Equations	5	3	25	75	100	4
	Elective I	5	3	25	75	100	4
		rt B			1	<u> </u>	
18PVE201 Value Education: Human Rights		2	3	25	75	100	2
	Non	- Credit					
18PLS201	Career Competency Skills II	1					
	Total	30				600	24

Third Semester							
Subject Code	Subject	Hours/	Exam.	Μ	Max.marks		Credit
		week	Duration	CA	CE	Total	Points
			(Hours)				
		rt A	1	1	1	T	Γ
18PMAM301	Core X: Complex	6	3	25	75	100	5
	Analysis	0	0	20	10	100	_
18PMAM302	Core XI: Fluid Dynamics	6	3	25	75	100	5
18PMAM303	Core XII: Optimization	6	3	25	75	100	4
	Techniques	0	5	25	75	100	4
	Elective II	5	3	25	75	100	4
18PCSMAI301	IDC: Programming in C++	4	3	25	75	100	2
18PCSMAIP301	IDC Practical:	3	3	40	60	100	2
	Programming in C++						
	Total	30				600	22
Fourth Semeste	r						
	Pa	rt A		-	-		
18PMAM401	Core XIII: Functional	6	3	25	75	100	5
	Analysis	0	5	25	75	100	5
18PMAM402	Core XIV: Integral						
	Equations and Calculus of	6	3	25	75	100	4
	Variations						
18PMAM403	Core XV: Numerical	(3	25	75	100	4
	Analysis	6	3	23	75	100	4
18PMAM404	Core XVI: Fuzzy Sets and	F	0	25	75	100	А
	Fuzzy Logic	5	3	25	75	100	4
18PMAM405	Core XVII: MATLAB	4	3	25	75	100	2
18PMAMP401	Core Practical II: MATLAB	3	3	40	60	100	2
	Total	30				600	21
			G	rand T	otal	2400	90

ELECTIVE SUBJECTS:

Students shall opt an elective subject from the list of ELECTIVE I (SEMESTER II)

ELECTIVE I (SEMESTER II)

S.No	Subject Code	Subject
1	18PMAEL201	Design Theory
2	18PMAEL202	Stochastic process
3	18PMAEL203	Difference Equations

Students shall opt an elective subject from the list of ELECTIVE II (SEMESTER III).

ELECTIVE II (SEMESTER III)

S.No	Subject Code	Subject
1	18PMAEL301	Control Theory
2	18PMAEL302	Neural Networks
3	18PMAEL303	Number Theory

FOR COURSE COMPLETION

Students shall

- Complete all Major papers
- Opt any one Elective Subject in each of Second and Third semester.
- Complete one value education in Second semester.
- Career Competency Skills papers as non credit course in I and II semester.
- Complete one IDC in Third semester.

TOTAL CREDIT DISTRIBUTION

Components	Total Marks	Credits	
Core	100X17 PAPERS	1700	72
Elective	100X2 PAPERS	200	8
IDC	100X1 PAPER	100	2
Core Practical	100X2 PAPERS	200	4
IDC Practical	100X1 PAPER	100	2
Value Education	100X1 PAPER	100	2
Total	No. of papers 24	2400	90

18PMAM101		CORE I: LINEAR ALGEBRA	SEN	IESTEI	R – I			
Course	Objectives:							
The Course aims								
•	 To learn about the concepts of Algebra of Linear Transformations and Polynomials. Learning about Direct sum and Cyclic Subspaces. 							
Credits	: 5Total Hours: 60							
UNIT		CONTENTS		Hrs.	CO			
I		mations - The algebra of linear transforma - Representations of linear transformation tions: 3.1 - 3.4)		12	CO 1			
II	 Polynomials: The algebra of polynomials – Lagrange Interpolation – Polynomial Ideals – The prime factorization of a polynomial. (Chapter - 4 Sections: 4.1 - 4.5) 				CO 2			
III	Determinants: Commutative Rings – Determinant functions. Elementary Canonical Forms: Characteristic Values – Annihilating polynomials - Invariant subspaces. (Chapter - 5 Sections: 5.1 - 5.2) (Chapter - 6 Sections: 6.1 - 6.4)				CO 3			
IV	Simultaneous tri Direct sum De	angulation and simultaneous Diagonalizat compositions - Invariant Direct sums - position theorem.	tion –	12	CO 4			
V	Bilinear forms – Symmetric Bilinear Forms – Skew-SymmetricVForms – Groups preserving Bilinear Forms.(Chapter – 10 Sections: 10.1 – 10.4)				CO 5			
Text Bo								
1. <i>Kenneth Hoffman</i> and <i>Ray Kunze</i> . 1971. Linear Algebra. [Second Edition]. Prentice Hall of India Private Limited, New Delhi.								
Referen	nce Books							
1.	Kumaresan, S. 20	00. Linear Algebra. Prentice Hall of India L	.td, Nev	v Delhi	•			
2.		7., VedPrakashMainra. And JawaharLalArora, r a. East West Press Ltd.	Z. 1985	. Intro	duction			

After completion of the course, the students will be able to

CO 1	Describe the matrix representation of linear transformation
CO 2	Gain knowledge on factorization of polynomial
CO 3	Know the properties of determinants and characteristics values
CO 4	Understand the concepts of triangulation, diagonalization and decomposition
CO 5	Learn the concepts of various bilinear forms

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5			
CO 1	Н	М	М	Н	Н			
CO 2	Н	L	L	L	Н			
CO 3	Н	Н	М	Н	Н			
CO 4	Н	L	L	L	Н			
CO 5	Н	L	L	L	Н			
H-High; M-Medium; L-Low								

CORE II: REAL ANALYSIS

SEMESTER - I

Course	Objectives:		
The Co	urse aims		
•	To understand the functions of bounded variations		
•	To learn about the Riemann Stieltjes integral		
•	To know the importance of mean value theorem and Taylor's form	nula	
Credits			ours: 50
UNIT	CONTENTS	Hrs.	CO
Ι	 Derivatives: Definition of derivative - Derivatives and Continuity - The Chain rule - Rolle 's Theorem - The Mean Value theorem for derivatives - Taylor's formula with remainder Functions of Bounded Variation: Functions of Bounded variation - Total variation. (Chapter - 5 Sections: 5.1, 5.2, 5.3, 5.5, 5.9, 5.10, 5.12) (Chapter - 6 Sections: 6.3, 6.4) 	10	CO 1
II	Riemann- Stieltjes Integral : The definition of the Riemann- Stieltjes integral – Linear properties – Integration by parts – Change of variable in a Riemann-Stieltjes integral – Reduction to a Riemann integral – Step functions as integrators – Reduction of a Riemann-Stieltjes integral to a finite sum – Euler's Summation formula – Monotonically increasing integrators –Riemann's condition - Sufficient conditions for existence of Riemann- Stieltjes integrals - Necessary conditions for the existence Riemann-Stieltjes integrals – Mean value theorems Riemann- Stieltjes integrals – The integral as a function of the interval – Second fundamental theorem of Integral calculus. (Chapter - 7 Sections: 7.1 - 7.11, 7.13, 7.16 - 7.20)	10	CO 2
III	Sequences of Functions: Pointwise convergence of sequences of functions – Examples of sequences of real value-valued functions – Definition of uniform convergence – Uniform convergence and continuity – The Cauchy condition for uniform convergence – Uniform convergence of infinite series of functions – A space-filling curve – Uniform convergence and Riemann-Stieltjes integration – Nonuniformly convergent sequences that can be integrated term by term – Uniform convergence and differentiation – Sufficient condition for uniform convergence of a series. (Chapter – 9 Sections: 9.1 - 9.11)	10	CO 3

IV	 Multivariable Differential Calculus: Introduction – The directional derivatives - Directional derivatives and continuity – The total derivative – The total derivative expressed in terms of partial derivatives – An Application to complex valued functions – The Jacobian matrix – The Chain rule – The Mean value theorem for differentiable functions – Taylor's formula for functions from Rⁿ to R¹. (Chapter – 12 Sections: 12.1 – 12.6, 12.8, 12.9, 12.11, 12.14) 	10	CO 4		
v	Implicit Functions: Introduction – Functions with non-zeroJacobian determinant –The Inverse function theorem – TheImplicit function theorem.(Chapter - 13 Sections: 13.1 – 13.4)		CO 5		
Text Bo	ook				
1.	Tom M. Apostol. 1985. Mathematical Analysis. [Second Ed	ition].	Narosa		
	Publishing House, New Delhi.				
Referer	Reference Book				
1.	Walter Rudin. 1976. Principles of Mathematical Analysis. [Third Edition	n]. McGr	aw Hill,		
	New Delhi				

After completion of the course, the students will be able to

CO 1	Learn the concepts of derivatives and theorems based on derivatives				
CO 2	Discuss the fundamental theorems of integral calculus				
CO 3	Understand pointwise convergence, uniform convergence and conditions for uniform convergence				
CO 4	Gain knowledge on directional derivatives and Jacobian matrix				
CO 5	Know about inverse function theorem and implicit function theorem				

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	М	М	L	Н	
CO 2	Н	L	М	L	Н	
CO 3	Н	М	Н	L	Н	
CO 4	Н	М	М	L	Н	
CO 5	Н	L	L	L	Н	
H-High; M-Medium; L-Low						

Г

-

18	PMAM103	CORE III: MECHANICS	SEN	MESTE	R – I			
Course	Objectives:							
The Co	urse aims							
•	 To learn the concepts of Mechanical system, Lagrange's and Hamilton's Equations. To introduce the concepts of Hamilton - Jacobi Theory and Canonical Transformations. 							
Credits	5:4]	Fotal H	ours: 60			
UNIT		CONTENTS		Hrs.	CO			
I	Introductory Concepts: The Mechanical System – Generalized Co-ordinates – Constraints – Virtual work – Energy and Momentum. (Chapter - 1 Sections: 1.1 - 1.5)				CO 1			
II	Lagrange's Equations: Derivation of Lagrange's Equations –Examples – Integrals of motion.(Chapter - 2 Sections: 2.1 - 2.3)				CO 2			
III	Hamilton's Equ Equations. (Chapter - 4 Sec	12	CO 3					
IV	Hamilton-Jacob Hamilton – Jacol (Chapter - 5 Sec	12	CO 4					
v	Canonical Tran functions – Spe brackets. (Chapter - 6 Sec	0	12	CO 5				
Text Book								
1. <i>Greenwood, T.</i> 1985. Classical Dynamics. Prentice Hall of India, New Delhi.								
Reference Books								
1.	Goldstein, H. 2001. Classical Mechanics. Narosa Publishing House, New Delhi.							
2.	Company, New							
3.	<i>Rane, N.C.and Jo</i> Delhi.	pag, P.S. 1991. Classical Mechanics. Tata	McGr	aw Hil	l, New			

After completion of the course, the students will be able to

CO 1	Understand the basic concepts of a mechanical system
CO 2	Derive the equation of motion for various system
CO 3	Describe Hamilton's principle
CO 4	Learn the concepts of separable system
CO 5	Gain knowledge on canonical transformations, Lagrange and Poisson brackets

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	Н	М	Н	Н	М		
CO 2	Н	Н	Н	Н	М		
CO 3	Н	М	Н	Н	М		
CO 4	Н	Н	Н	Н	М		
CO 5	Н	Н	Н	Н	М		
H-High; N	H-High; M-Medium; L-Low						

CORE IV: ORDINARY DIFFERENTIAL EQUATIONS

SEMESTER - I

The Course aims • To describe Linear equations with constant and variable coefficients. • To study the methods of solving Ordinary Differential Equations. Credits: 4 Total Hours: 50 UNIT CONTENTS Hrs. CO singular point - Properties of Bessel functions. 10 CO1 Systems of Linear Differential Equations: 10 CO2 Heorem - Fundamental matrix.(Chapter - 4 Sections: A1 - 42, 44 - 45.) 10 CO2 Systems of Linear Differential Equations: 10 CO2 Inear systems - Linear Systems with constant coefficients - Linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. 10 CO3 IV Continuation and dependence on initial conditions - Examples - Continuation and dependence on initial conditions - Examples - Continuation and dependence on initial conditions - Examples - Continuation and dependence on initial conditions - Examples - Continuation and dependence on initial conditions - Sturm's comparison theorem - Flementary linear oscillations - Coscillations of S', and theorem of Hille-Winther - Oscillations of x''+a(t)x = 0. (Chapter - 8Sections: 8.1 - 8.5) 10 CO 5 Text Book 1 Deo, S.G., Laksimikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. Narosa Publishing House, Chennai. 10 CO 5 Codington, E.A. and Ramesh C.Gupta 1991. Essential of Ordinary Differenti	Course	Objectives:						
 To study the methods of solving Ordinary Differential Equations. Credits: 4 Total Hours: 50 UNIT CONTENTS Hrs. CO Solutions in Power Series: Introduction – Second order Linear equations with ordinary points – Legendre Equation and Legendre polynomials – Second order equation with regular singular point – Properties of Bessel functions. (Chapter - 3 Sections: 3.1 – 3.5) Systems of Linear Differential Equations: Introduction – Systems of first order equations – Existence and Uniqueness theorem – Fundamental matrix.(Chapter - 4 Sections: 4.1 - 4.2, 4.4 - 4.5) Systems of Linear Differential Equations: Non-homogeneous linear systems – Linear systems with constant coefficients – Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) Existence and Uniqueness of Solutions: Successive approximations – Picard's theorem – Some Examples – Continuation and dependence on initial conditions – Existence of solutions in the large – Existence and Uniqueness of solutions – CO 4 of solutions in the large – Existence and Uniqueness of solutions – CO 4 of solutions in the large – Existence and Uniqueness of solutions – CO 4 of solutions in the large – Existence and Uniqueness of solutions – CO 4 of solutions in the large – Existence and Uniqueness of solutions – CO 4 of solutions in the large – Existence and Uniqueness of solutions – CO 5 Continuation theorem of Hille-Wintner – Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 – 8.5) Deo, S.G., LaksImikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. Successive automs. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Cupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinso	The Cou	arse aims						
Total Hours: 50UNITCONTENTSHrs.COSolutions in Power Series: Introduction - Second order Linear equations with ordinary points - Legendre Equation and Legendre polynomials - Second order equation with regular singular point - Properties of Bessel functions. (Chapter - 3 Sections: 3.1 - 3.5)Image: CO 1IISystems of Linear Differential Equations: Introduction - Systems of Linear Differential Equations: A1 - 42, 44 - 45)10CO 2Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8)10CO 3IVContinuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems of theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter-8 Sections: 8.1 - 8.5)10CO 5Text Book1Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.10CO 5Reference Books1Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential Equations.Codinary Differential Equations.	•	 To describe Linear equations with constant and variable coefficients. 						
UNIT CONTENTS Hrs. CO Solutions in Power Series: Introduction - Second order Linear equations with ordinary points - Legendre Equation and Legendre polynomials - Second order equation with regular singular point - Properties of Bessel functions. (Chapter - 3 Sections: 3.1 - 3.5) IO CO 1 II Systems of Linear Differential Equations: Introduction - Systems of first order equations - Existence and Uniqueness theorem - Fundamental matrix.(Chapter - 4 Sections: 4.1 - 42, 4.4 - 4.5) IO CO 2 Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) IO CO 3 IV Continuation and dependence on initial conditions - Existence and Uniqueness of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8) IO CO 4 V Oscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 - 8.5) IO CO 5 Text Book 1 Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations	•	To study the methods of solving Ordinary Differential Equations.						
Solutions in Power Series: Introduction - Second order Linear equations with ordinary points - Legendre Equation and Legendre polynomials - Second order equation with regular singular point - Properties of Bessel functions. (Chapter - 3 Sections: 3.1 - 3.5)10CO 1Systems of Linear Differential Equations: Introduction - Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8)10CO 3IVExistence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8)10CO 4VVOscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5)10CO 5Text BookIDeo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference Books1Some summarian, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3Coddington, E.A. and Nor	Credits	:4	Fotal He	ours: 50				
Iequations with ordinary points - Legendre Equation and Legendre polynomials - Second order equation with regular singular point - Properties of Bessel functions. (Chapter - 3 Sections: 3.1 - 3.5)10CO 1IISystems of Linear Differential Equations: Introduction - Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8)10CO 2IVSystems of Solutions: - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8)10CO 4VOscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5)10CO 5Text Book1Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.New York.8.Codilations. McGraw Hill, New York.3.Codington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential Equations. McGraw Hill, New York.	UNIT	CONTENTS	Hrs.	CO				
I Legendre polynomials - Second order equation with regular singular point - Properties of Bessel functions. (Chapter - 3 Sections: 3.1 - 3.5) 10 CO 1 II Systems of Linear Differential Equations: Introduction - Existence and Uniqueness theorem - Fundamental matrix.(Chapter - 4 Sections: 4.1 - 4.2, 4.4 - 4.5) 10 CO 2 III Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) 10 CO 3 IV Existence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions - Existence of systems.(Chapter - 5Sections: 5.3 - 5.8) 10 CO 4 V Oscillations of Second Order Equations: Fundamental results - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5) 10 CO 5 Text Book I Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. New Delhi. Refererce Books I Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory								
 singular point - Properties of Bessel functions. (Chapter - 3 Sections: 3.1 - 3.5) Systems of Linear Differential Equations: Introduction - Systems of first order equations - Existence and Uniqueness theorem - Fundamental matrix.(Chapter - 4 Sections: 4.1 - 4.2, 4.4 - 4.5) Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) Existence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8) Oscillations of Second Order Equations: Fundamental results - Sturn's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 - 8.5) Deo, S.G., Lakshmikanthan, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 								
(Chapter - 3 Sections: 3.1 - 3.5)Image: Constraint of the c	Ι	Legendre polynomials - Second order equation with regular	10	CO 1				
IISystems of Linear Differential Equations: Introduction – Systems of first order equations – Existence and Uniqueness theorem – Fundamental matrix.(Chapter - 4 Sections: 4.1 - 4.2, 44 - 4.5)10CO 2IIISystems of Linear Differential Equations: Non-homogeneous linear systems – Linear systems with constant coefficients – Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8)10CO 3IVExistence and Uniqueness of Solutions: Successive approximations – Picard's theorem – Some Examples – Continuation and dependence on initial conditions – Existence of solutions in the large – Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8)10CO 4VOscillations of Second Order Equations: Fundamental results – Sturm's comparison theorem – Elementary linear oscillations – Comparison theorem of Hille-Wintner – Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference Books1.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential		singular point – Properties of Bessel functions.						
IISystems of first order equations - Existence and Uniqueness theorem - Fundamental matrix.(Chapter -4 Sections: 4.1 - 4.2, 4.4 - 4.5)10CO 2IIISystems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. 		(Chapter – 3 Sections: 3.1 – 3.5)						
 theorem - Fundamental matrix.(Chapter - 4 Sections: 4.1 - 4.2, 4.4 - 4.5) Systems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) Existence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8) Oscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5) Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 		Systems of Linear Differential Equations: Introduction -						
IIISystems of Linear Differential Equations: Non-homogeneous linear systems - Linear systems with constant coefficients - Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8)10CO 3IVExistence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8)10CO 4VOscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference Books1.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	II	Systems of first order equations - Existence and Uniqueness	10	CO 2				
 III linear systems – Linear systems with constant coefficients – Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) Existence and Uniqueness of Solutions: Successive approximations – Picard's theorem – Some Examples – Continuation and dependence on initial conditions – Existence of solutions in the large – Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8) Oscillations of Second Order Equations: Fundamental results – Sturm's comparison theorem – Elementary linear oscillations – Comparison theorem of Hille-Wintner – Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5) Text Book Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 		theorem – Fundamental matrix.(Chapter - 4 Sections: 4.1 – 4.2, 4.4 – 4.5)						
 III Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) Existence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8) V Coscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5) Text Book 1. Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 								
Linear systems with periodic coefficient. (Chapter - 4 Sections: 4.6 - 4.8) Image: Reference in the systems of solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8) 10 CO 4 V Oscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter - 8Sections: 8.1 - 8.5) 10 CO 5 Text Book Reference Books 1. Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	TTT	linear systems - Linear systems with constant coefficients -	10 CO 2					
IVExistence and Uniqueness of Solutions: Successive approximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8)10CO 4VOscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 - 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference Books1.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	111	Linear systems with periodic coefficient.	10	05				
IVapproximations - Picard's theorem - Some Examples - Continuation and dependence on initial conditions - Existence of solutions in the large - Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 - 5.8)10CO 4VOscillations of Second Order Equations: Fundamental results - Sturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 - 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference Books1.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential 		(Chapter - 4 Sections: 4.6 – 4.8)						
IVContinuation and dependence on initial conditions – Existence of solutions in the large – Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 – 5.8)10CO 4VOscillations of Second Order Equations: Fundamental results – Sturm's comparison theorem – Elementary linear oscillations – Comparison theorem of Hille-Wintner – Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 – 8.5)10CO 5Text BookIntervention of Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Delhi.Reference Books1.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.Intervention of Ordinary Differential Iterential Equations. 1972. Theory of Ordinary Differential		Existence and Uniqueness of Solutions: Successive						
of solutions in the large – Existence and Uniqueness of solutions of systems.(Chapter - 5Sections: 5.3 – 5.8)VOscillations of Second Order Equations: Fundamental results – Sturm's comparison theorem – Elementary linear oscillations – Comparison theorem of Hille-Wintner – Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 – 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference Books1.Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential		approximations - Picard's theorem - Some Examples -						
of systems.(Chapter - 5Sections: 5.3 - 5.8)Image: Constraint of the systems of the systems of the systems of the system of the syst	IV	Continuation and dependence on initial conditions - Existence	10	CO 4				
VOscillations of Second Order Equations: Fundamental results – Sturm's comparison theorem – Elementary linear oscillations – Comparison theorem of Hille-Wintner – Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 – 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference BooksImage: Company Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential		of solutions in the large – Existence and Uniqueness of solutions						
VSturm's comparison theorem - Elementary linear oscillations - Comparison theorem of Hille-Wintner - Oscillations of x"+a(t)x = 0.(Chapter-8Sections: 8.1 - 8.5)10CO 5Text Book1.Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi.Reference BooksImage: Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai.2.Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential		of systems.(Chapter - 5Sections: 5.3 – 5.8)						
 Comparison theorem of Hille-Wintner – Oscillations of x"+a(t)x = 0.(Chapter-8Sections: 8.1 – 8.5) Text Book Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 								
Comparison theorem of Hille-Wintner - Oscillations of x''+a(t)x = 0.(Chapter-8Sections: 8.1 - 8.5) Text Book 1. Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	v	Sturm's comparison theorem - Elementary linear oscillations -	10	CO 5				
Text Book 1. Deo, S.G., Lakshmikantham,V. and Raghavendra,V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	v	Comparison theorem of Hille-Wintner – Oscillations of $x''+a(t)x$	10	05				
 Deo, S.G., Lakshmikantham, V. and Raghavendra, V.1997. Ordinary Differential Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 								
 Equations. [Second Edition]. Tata Mcgraw Hill Publishing Company Ltd., New Delhi. Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 	Text Bo							
Delhi. Delhi. Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	1.		-					
Reference Books 1. Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential		Equations. [Second Edition]. Tata Mcgraw Hill Publishing Comp	oany Lto	l., New				
 Somasundram, D. 2002. Ordinary Differential Equations. Narosa Publishing House, Chennai. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 								
 House, Chennai. 2. Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. 3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 								
 Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinary Differential Equations. McGraw Hill, New York. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential 	1.		osa Puł	olishing				
Equations. McGraw Hill, New York.3.Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential								
3. Coddington, E.A. and Norman Levinson. 1972. Theory of Ordinary Differential	2.	Agarwal, R. P. and Ramesh C.Gupta 1991. Essential of Ordinar	y Diffe	erential				
• • •								
Equations. Tata McGraw Hill Education Private Ltd., New York.	3.	Coddington, E.A. and Norman Levinson. 1972. Theory of Ordina	ry Diffe	erential				
		Equations. Tata McGraw Hill Education Private Ltd., New York.						

After completion of the course, the students will be able to

CO 1	Find power series solutions about ordinary points and singular points
CO 2	Derive particular solution to initial value problem
CO 3	Solve basic application problems described by first order differential equations
CO 4	Understand the concepts of existence and uniqueness solutions
CO 5	Gain knowledge on oscillations of second order equations

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	Н	Н	Н	Н	Н		
CO 2	М	Н	Н	Н	Н		
CO 3	М	Н	Н	Н	Н		
CO 4	М	Н	Н	Н	Н		
CO 5	М	Н	Н	Н	Н		
H-High; N	H-High; M-Medium; L-Low						

18PMAM105		CORE V: GRAPH THEORY	SEN	AESTEI	R – I		
Course	Objectives:						
The Co	urse aims						
The co		e the concepts of Graph.					
		ndamental properties and some special type	s of G	raph.			
	• To introduc			1			
Credits			7	Total H	ours: 50		
UNIT		CONTENTS		Hrs.	CO		
	Graphs and Su	bgraphs: Graphs and Simple Graphs - G	raph				
	-	The Incidence and Adjacency Matric	-				
-	-	tex Degrees - Paths and Connection - Cycle		10	60.1		
Ι	0 1	Cut Edges and Bonds - Cut vertic		10	CO 1		
	Cayley'sFormula	0					
	(Chapter - 1 Sec	tions: 1.1 – 1.7)(Chapter - 2 Sections: 2.1 – 2.	.4)				
	Connectivity: Co	onnectivity and Blocks.					
II	Euler Tours and Hamilton Cycles: Euler Tours - Hamilton				CO 2		
	Cycles.			10			
		tions: 3.1 – 3.2)(Chapter - 4 Sections: 4.1 – 4					
		chings- Matchings and Coverings in Bipa	artite				
III	Graphs – Perfect Matchings.				CO 3		
	Edge Colouring						
		tions: 5.1 - 5.3)(Chapter - 6 Sections: 6.1)	a a				
	Theorem.	ets and Cliques: Independent Sets – Ram	sey s				
IV		gs: Chromatic Number.		10	CO 4		
		tions: 7.1 – 7.2)(Chapter - 8 Sections: 8.1)					
		Plane and Planar Graphs – Dual Grap	hs -				
	-	- Five colour theorem and the Four Co					
	Conjecture.		Jiour				
V	,	s: Directed Graphs - Directed Paths.		10	CO 5		
	-	tions: 9.1 – 9.3, 9.6)(Chapter - 10 Sections: 1	0.1 -				
	10.2)	······································					
Text Book							
1.	Bondy, J.A. and Murty, U.S.R. 1976. Graph Theory with Applications. North						
Holland, New York. Reference Books							
			- ((F1		
1.	Balakrishnan, R. and Ranganathan, K. A. 1999. Text Book of Graph Theory.						
	Springer Verlag, New York.						
2.	<i>Frank Harary.</i> 1988. Graph Theory. Narosa Publishing House, New Delhi.						

After completion of the course, the students will be able to

CO 1	Explain the concepts of graphs and trees
CO 2	Illustrate connectivity and tours through Euler graphs and Hamiltonian cycles
	investigate perfect matching
CO 3	Discuss matching and edge colourings for graphs
CO 4	Characteristics independent sets and find chromatic number for graphs
CO 5	Derive some properties of planarity and explain basic properties of directed
05	graphs

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	Н	L	L	L	Н		
CO 2	Н	L	М	L	Н		
CO 3	Н	L	L	L	Н		
CO 4	Н	L	L	L	Н		
CO 5	Н	L	Н	L	Н		
H-High; N	H-High; M-Medium; L-Low						

18PMAMP101		CORE PRACTICAL I: MATHEMATICAL TEXT EDITOR - LATEX	SEMESTER – I	
Course Objecti	ve:			
The Course aim	IS			
• To ena	ble the stu	udents to prepare research articles in LaTe>	K format	
Credits: 2			Total Ho	ours: 30
PROGRAM	CONTENTS			CO
1	Creation of documents using itemization, enumeration and description		03	CO 1
2	Creation of Mathematical Statements		03	CO 1
3	Creation of Tables		03	CO 1
4	Creation of Matrices		03	CO 1
5	Creation of Differential equations		03	CO 2
6	Creation of Integral equations		03	CO 2
7	Preparing a question paper		03	CO 3
8	Inserting pictures		03	CO 4
9	Creation of Powerpoint presentation			CO 5

10	Article preparation	03	CO 5	
Reference Book				
1.	<i>Nambudiripad, K.B.M.,</i> 2014. LaTeX for begineers. Nar House private limited, New Delhi.	osa Puł	olishing	

After completion of the course, the students will be able to

CO 1	Create mathematical statements, tables and matrices
CO 2	Demonstrate Differential equations and Integral equations
CO 3	Prepare question papers in LaTeX format
CO 4	Gain knowledge of inserting pictures
CO 5	Prepare PowerPoint presentation and Article in LaTeX

CAREER COMPETENCY SKILLS – I SEMESTER – I

Course Objectives:

The Course aims

- To impart knowledge on the Aptitude
- To enhance employability skills and to develop career competency

-		Fotal H	ours: 15	
UNIT	CONTENTS	Hrs.	CO	
Ι	Solving Simultaneous Equations Faster – Number System : HCF, LCM – Square roots and Cube roots - Averages	03	CO 1	
II	Problems on Numbers -Problems on Ages	03	CO 1	
III	Calendar – Clocks – Pipes and Cisterns	03	CO 1	
IV	Time and Work – Time and Distance	03	CO 2	
V	Ratio and Proportion – Partnership – Chain Rule03C			
Text Book				
1.	1. Aggarwal R.S. 2013. Quantitative Aptitude. [Seventh Revised edition].S.Chand&			
Co., New Delhi.				
References Book				
1.	. <i>AbhijithGuha</i> , Quantitative Aptitude for Competitive Examinations , 5 th Edition,			
	Tata McGraw Hill, 2015, New Delhi.			

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Understand the basic mathematical functions.
CO 2	Calculate Problems on Ages with shortcuts.
CO 3	Understand the core concepts of Pipes & Cisterns, Calendar & Clocks.
CO 4	Obtain knowledge on shortcuts to Time & Work and Time & Distance.
CO 5	Calculate Ratio & Proportion, Partnership with shortcuts.

18PMAM201		CORE VI: ALGEBRA	SEM	IESTER	R – II
Course	Objectives:				
The Co	urse aims				
•		concept of Field Theory			
•	To learn about C	1 5			
Credits			T	Total Ho	ours: 60
UNIT		CONTENTS		Hrs.	CO
	Group Theory:	Another Counting Principle –Sylow's Theor	em.	12	
I	(Chapter - 2 Sections: 2.11 and 2.12)				CO 1
	` `	uclidean Rings –A Particular Euclidean R	ing –		
II	Polynomial Rings –Polynomials over the Rational Field.				CO 2
	(Chapter - 3 Sections: 3.7 – 3.10)				
III	Fields: Extension	n Fields –Roots of Polynomials.		12	CO 3
111	(Chapter - 5 Sections: 5.1, 5.3)			14	05
IV	Fields : The Elements of Galois Theory – Finite Fields. 12				CO 4
	(Chapter - 5 Section: 5.6) (Chapter - 7 Section: 7.1)				
		neorem on finite division rings - A theore		12	
V	Frobenius – Integral quaternions and the four square theorem.				CO 5
	(Chapter - 7 Sections: 7.2 – 7.4)				
Text Bo					
1.					
	New Delhi.				
	nce Books		- 1		
1.					
	New Delhi.				
2.		lgebra, Prentice-Hall, Englewood Cliff.	1 50		1 7
3.	David S.Dummit and Richard M.Foote, 2004. Abstract Algebra [Third Edition].				
	John Wiley and Sons Publications, India.				

After completion of the course, the students will be able to

CO 1	Learn the Sylow's theorems and its applications
CO 2	Discuss the concepts of roots of polynomials
CO 3	Gain knowledge on polynomial rings
CO 4	Know about Galois Theory and finite fields
CO 5	Learn the Wedderburn's and four square theorems

MAPPING	ſ				
CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	Н	Н	L	Н
CO 2	Н	М	Н	L	Н
CO 3	Н	Н	Н	L	Н
CO 4	Н	Н	Н	L	Н
CO 5	Н	М	Н	L	Н
H-High; M-Medium; L-Low					

CORE VII: TOPOLOGY

SEMESTER - II

Course Objectives:				
The Course aims				
 To study about Topological spaces. 				
• To learn the concepts of continuity, connectedness and compactne	ss.			
Credits: 5	Fotal H	ours: 60		
UNIT CONTENTS	Hrs.	CO		
I Topological Spaces – Basis for a topology – The order topology – The product topology on X x Y – The subspace topology - Closed sets and Limit Points. (Chapter - 2 Sections: 12 - 17)	12	CO 1		
IIThe Metric topology – Continuous functions – The product topology. (Chapter - 2 Sections: 18 – 20)	12	CO 2		
 Connected spaces - Connected subspaces of the real line - Components and Local Connectedness. (Chapter - 3 Sections: 23 - 25) 	12	CO 3		
 IV Compact Spaces – Compact subspaces of the real line - Limit Point Compactness - Local compactness. (Chapter - 3 Sections: 26 – 29) 	12	CO 4		
 Countability axioms - The separation axioms - Normal Spaces - The Urysohn lemma - Tietz's Extension Theorem . (Chapter - 4 Sections: 30 - 33, 35) 	12	CO 5		
Text Book				
1. <i>Munkers, R. James.</i> 2003. Topology. [Second Edition]. Prentice Hall of India Pvt. Ltd., New Delhi.				
Reference Books				
1. <i>Dugundji J. Allyn</i> and <i>Bacon.</i> 1966. Topology. Prentice Hall of I New Delhi.	ndia Pv	vt. Ltd.,		
2. <i>Simmons, F. George.</i> 1963. Introduction to Topology and Mo McGraw Hill Book Company, New Delhi.				
3. <i>Sze-Tsen Hu</i> . 1965. Elements of General Topology. Holden – Day.	Inc.			

After completion of the course, the students will be able to

CO 1	Know about basis and order of topology
CO 2	Understand the concepts of metric and product topology
CO 3	Discuss about connected spaces and components
CO 4	Gain knowledge on limit point compactness and local compactness
CO 5	Learn the method of extending functions on subsets to the whole space

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	М	L	L	Н	
CO 2	Н	М	М	L	Н	
CO 3	Н	М	М	L	Н	
CO 4	Н	М	L	L	Н	
CO 5	Н	L	L	L	Н	
H-High; N	H-High; M-Medium; L-Low					

18PMAM203

CORE VIII: MEASURE THEORY AND INTEGRATION

SEMESTER – II

Course Objectives:

The Course aims

- To provide a basic knowledge in Lebesgue measure and integration
- To study inequalities and L^p Spaces.
- To study signed measures and decomposition theorems.

Credits	:4	Fotal He	ours: 50		
UNIT	CONTENTS	Hrs.	CO		
I	Measure on the Real Line: Lebesgue Outer Measure - Measurable Sets – Regularity - Measurable Functions. (Chapter – 2 Sections: 2.1 - 2.4)	10	CO 1		
п	Integration of Functions of a Real Variable : Integration of Non- Negative Functions - The General Integral - Integration of Series - Riemann and Lebesgue Integrals. (Chapter - 3 Sections: 3.1 - 3.4)	10	CO 2		
ш	Abstract Measure Spaces: Measures and Outer Measures -Extension of Measure -Uniqueness of the Extension -Completion of a Measure - Measure Spaces.(Chapter - 5 Sections: 5.1 - 5.5)	10	CO 3		
IV	Inequalities and the L^p Spaces : The L ^p Spaces - Convex Functions - Jensen's Inequality - The Inequalities of Holder and Minkowski - Completeness of $L^p(\mu)$ (Chapter - 6 Sections: 6.1 - 6.5)	10	CO 4		
v	Signed Measures and their Derivatives: Signed Measures and The Hahn Decomposition - The Jordan Decomposition - The Radon-Nikodyn Theorem (Chapter - 8 Sections: 8.1 - 8.3)10				
Text Bo					
1.	<i>De.Barra.</i> 1981. Measure Theory and Integration. [First Edition]. New Age International Publishers, New Delhi.				
Referer	Reference Books				
1.	<i>Munroe, M.E.</i> 1953. Introduction to Measure and Integration. Addison Wesley, Mascow.				
2.	<i>Natanson, I.P.</i> 1955. Theory of Functions of a Real Variable. Fr Publishing Company, New York.	rederick	Ungar		

After completion of the course, the students will be able to

CO 1	Learn the concepts of measure on real line
CO 2	Understand the concepts of Riemann integrals and Lebesgue integrals
CO 3	Know about integration on abstract measure space
CO 4	Discuss convex functions and inequalities
CO 5	Gain knowledge on signed measures and their derivatives

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	М	М	М	Н	
CO 2	Н	М	М	М	Н	
CO 3	Н	L	L	L	Н	
CO 4	Н	L	L	L	Н	
CO 5	Н	L	L	L	Н	
H-High; N	H-High; M-Medium; L-Low					

CORE IX: PARTIAL DIFFERENTIAL EQUATIONS

SEMESTER – II

Course Objectives:

The Course aims

- To describe the physical systems in terms of Partial Differential Equations by using Mathematical Modeling.
- To learn analytical methods used to solve Partial Differential Equations.

Credits	:4	Fotal H	ours: 50
UNIT	CONTENTS	Hrs.	CO
I	First Order, Quasi-Linear Equations and Method of Characteristics: Introduction- Classification of First order equations – Construction of a First Order Equation – Method of Characteristics and General Solution – Canonical Forms of First Order Linear Equations. (Chapter – 2 Sections : 2.1 – 2.3, 2.5, 2.6)	10	CO 1
п	 Mathematical Models: Classical Equation – The Vibrating String Thevibrating Membrane - Waves in Elastic Medium. Classification of Second Order Linear Equations: Second Order Equations in Two Independent Variables – Canonical Forms – Equations with Constant Coefficients – General Solution. (Chapter - 3 Sections: 3.1 – 3.4)(Chapter - 4 Sections: 4.1 – 4.4) 	10	CO 2
III	The Cauchy Problem and Wave Equation : The Cauchy Problem – Cauchy – KowalewskayaTheorem –Homogeneous Wave Equation – Initial – Boundary Value Problems –Equations with Non-Homogeneous Boundary Conditions – Vibration of Finite String with Fixed Ends – Non-Homogeneous Wave Equations. (Chapter - 5 Sections: 5.1 - 5.7)	10	CO 3
IV	Method of Separation of Variables: Introduction - Separation of Variables – TheVibrating String Problem – Existence and Uniqueness of Solution of the Vibrating String Problem – The Heat Conduction Problem – Existence and Uniqueness of Solution of the Heat Conduction Problem – The Laplace and Beam Equations. (Chapter - 7 Sections: 7.1 – 7.7)	10	CO 4
V	Boundary value problems and Applications : Boundary Value Problems – Maximum and MinimumPrinciples - Uniqueness and Continuity Theorems – DirichletProblems for a Circle – DirichletProblems for a Circular Annulus – Neumann Problem for Circle – Dirichlet Problem for a Rectangle – The Neumann Problem for a Rectangle. (Chapter - 9 Sections: 9.1 – 9.7, 9.9)	10	CO 5

Text Bo	ook			
1.	<i>TynMyint, U. andLokenathDebnath.</i> 2007. LinearPartial Differential Equations for			
	Scientists and Engineers. [Fourth Edition]. Birkhauser publishers, Boston.			
Referen	Reference Books			
1.	Sneddon, I.N. 1957. Elements of Partial Differential Equations. Tata McGraw			
	Hill Company, New Delhi.			
2.	SankarRao, K. 2008. Introduction to Partial Differential Equations. [Second			
	Edition]. Prentice Hall of India, New Delhi.			
3.	Raisinghania, M.D. 2016. Advanced Differential Equations. S.Chand and			
	Company Ltd., New Delhi.			

After completion of the course, the students will be able to

CO 1	Classify partial differential equations and transform into canonical form
CO 2	Understand the concepts of class equations
CO 3	Determine the solution of Cauchy problem and wave equation
CO 4	Know the concepts of methods of separation variables
CO 5 Understand how solutions of partial differential equations determ	
05	conditions at the boundary of the domain and initial conditions at time zero

1,11,11,10					
PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	М
CO 2	М	Н	Н	Н	М
CO 3	М	Н	Н	Н	М
CO 4	М	Н	Н	Н	М
CO 5	М	Н	Н	Н	М
H-High; N	H-High; M-Medium; L-Low				

SEMESTER - II

Course Objectives:

The Course aims

- To study about Steiner triple systems
- To Introduce mutually orthogonal Latin squares

Credits	:4	Fotal H	ours: 50
UNIT	CONTENTS	Hrs.	CO
I	Steiner Triple Systems: The existence problem – The Bose construction – Skolen construction – The 6n+5 construction – The Wilson construction – Cyclic Steiner triple systems. (Chapter - 1 Section: 1.1 – 1.4, 1.6, 1.7)	10	CO 1
п	λ- Fold Triple Systems: Triple system of index $\lambda > 1$ – The existence of idempotent Latin squares – 2 fold triple systems – Mendelsohn triple systems – $\lambda=3$ and 6 – λ -fold triple systems in general. (Chapter - 2 Sections: 2.1– 2.6)	10	CO 2
III	Maximum Packings and Minimum Coverings: The general problem – Maximum packings – Minimum coverings. (Chapter - 4 Sections: 4.1 – 4.3)	10	CO 3
IV	Kirkman Triple Systems: A recursive construction – Constructing pairwise balanced designs. (Chapter - 5 Sections: 5.1 – 5.2)	10	CO 4
V	Mutually Orthogonal Latin Squares: Introduction – The Euler and MacNeish Conjectures – Disproof of the MacNeish Conjecture – Disproof of Euler conjecture – Orthogonal Latin Squares of order $n \equiv 2 \pmod{4}$. (Chapter - 6 Sections: 6.1 – 6.5)	10	CO 5
Text Bo	ok		
1.	<i>Rodger, C.A. and Charles C. Lindner,</i> 2009. Design Theory , [Second Edition]. CRC Press, New York.		
Referer	ice Books		
1.	<i>Ian Anderson,</i> 1998. Combinatorial Designs and Tournaments, Clarendon Press, Oxford.		
2.	<i>Yury J. Lonin and Mohan S, Shrikande.</i> 2006. Combinatorics of Symmetric Designs , Cambridge University Press.		
3.	<i>Wallis, W.D.,</i> 2007. Introduction to Combinatorial Designs, [See Chapman and Hall/CRC, New York.	econd E	dition].

After completion of the course, the students will be able to

CO 1	Learn the concepts of construction of triple system
CO 2	Design Latin squares for various triple system
CO 3	Understand the concepts of maximum packing and minimum covering
CO 4	Construct pairwise balanced design for Kirkman triple system
CO 5	Gain knowledge on Euler conjecture

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	М	Н	М
CO 2	М	Н	М	Н	М
CO 3	М	Н	М	Н	М
CO 4	М	Н	М	Н	М
CO 5	М	Н	М	Н	М
H-High; N	H-High; M-Medium; L-Low				

ELECTIVE I: STOCHASTIC PROCESS

SEMESTER - II

Course Objectives: The Course aims To give a good grip on concepts in Stochastic Process (Random Process). To provide a sound knowledge about rare events occurrence problems. Credits: 4 Total Hours: 50 **CONTENTS** UNIT Hrs. CO Stochastic Processes: Introduction - Specification of stochastic processes - Stationary processes - Second order process -Stationarity - Gaussian processes. I Markov chains: Definition and Examples - Transition matrix -10 CO1 Order of Markov Chain - Higher Transition probabilities. (Chapter - 2 Sections: 2.1, 2.2, 2.3, 2.3.1, 2.3.2, 2.3.3) (Chapter - 3 Sections: 3. 3.1, 3.1.1, 3.1.2, 3.2) Markov Chains: Classification of states and Chains: Communication Relations - Class property - Classification of Π chains - Classification of states - Determination of higher 10 **CO 2** transition probabilities - Aperiodic chain. (Chapter - 3 Sections: 3.4, 3.4.1, 3.4.2, 3.4.3, 3.4.4, 3.5, 3.5.1) Markov Processes with discrete state space: Poisson process -Introduction - Postulates for Poisson process - Properties of III Poisson process - Poisson process and related distributions -10 **CO 3** Inter arrival time – Pure Birth process – Birth and Death process. (Chapter - 4 Sections: 4.1, 4.1.1, 4.1.2, 4.1.3, 4.2, 4.2.1, 4.3.3, 4.4) Markov Processes with continuous state space: Introduction -Brownian motion - Wiener Process - Differential equations for a Wiener process - Kolmogorov equations - First passage time IV 10 CO 4 distribution for Wiener process - Distribution of maximum of a Wiener process - Distribution of the first passage time to a fixed point.(Chapter - 5 Sections: 5.1, 5.2, 5.3, 5.4, 5.5, 5.5.1, 5.5.2) Renewal Processes and Theory: Renewal Process -Renewal process in discrete time – Relation between F(S) and P(S) – Renewal processes in continuous time - Renewal function and Renewal density -Renewal theorems (Statement of Black Well's V **CO** 5 10 and Smith's theorems) - Residual and excess lifetimes - Poisson Process as a Renewal Process- Distribution of Y(t) and Z(t) – Moments of the Asymptotic Distributions. (Chapter - 6 Sections: 6.1, 6.1.1, 6.1.2, 6.2, 6.2.1, 6.5.4, 6.7, 6.7.1, 6.7.2, 6.7.3)

Text Bo	Text Book		
1.	Medhi, J. 2006. Stochastic Processes. [Second Edition]. New Age International		
	Publications, New Delhi		
Referen	Reference Books		
1.	Karlinand Taylor, H.M. 1975. First Course in Stochastic Processes. [Volume 1].		
	Academic Press.		
2.	Bhat, B.R. 2000, Stochastic Models: Analysis and Applications. New Age		
	International Publications, India.		

After completion of the course, the students will be able to

CO 1	Learn about Gaussian processes and Markov chain
CO 2	Understand the classification of chains
CO 3	Gain knowledge on Poisson processes and birth-death process
CO 4	Know Kolmogorov and Wiener process
CO 5	Learn the well known theorems on renewal process

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	М	L	L
CO 2	М	Н	М	L	L
CO 3	М	М	М	L	L
CO 4	М	М	М	L	L
CO 5	М	М	М	L	L
H-High; M-Medium; L-Low					

ELECTIVE I: DIFFERENCE EQUATIONS

SEMESTER - II

Course Objectives:

The Course aims

- To provide knowledge for solving difference equations.
- To learn about Stability theory.

Credits	Credits: 4 Total Hours: 50				
UNIT	CONTENTS	Hrs.	CO		
I	Difference Calculus: Difference Operator - Summation - Generating Function and Approximate Summation. (Chapter - 2 Sections: 2.1 – 2.3)	10	CO 1		
II	Linear Difference Equations: First order equations - General Results for linear equations - Solving Linear equations10CO(Chapter - 3 Sections: 3.1 - 3.3)				
III	Linear Difference Equations (Contd.): Equations with variable Coefficients – The z – Transform (Chapter – 3Sections: 3.5 and 3.7)	10	CO 3		
IV	Stability Theory: Initial Value problems for linear systems – Stability of linear systems (Chapter – 4 Sections: 4.1 and 4.2)	10	CO 4		
v	Asymptotic Methods: Introduction – Asymptotic analysis of sums – linear equations (Chapter - 5 Sections: 5.1 – 5.3)	10	CO 5		
Text Bo	ok				
1.	Kelly, W.G.andPeterson, A.C. 1991. Difference Equations, [Second Edition]. Academic Press, New York.				
Referen	Reference Books				
1.	<i>Elaydi, S.N.</i> 1991. An Introduction to Difference Equations, Springer–Verlag, New York.				
2.	Mickens, R. 1990. Difference Equations. Van Nostrand Reinhold, N	New Yo	rk.		
3.	<i>Agarwal, R.P.</i> 1992. Difference Equations and Inequalities, Marce York.	el Dekke	er, New		

After completion of the course, the students will be able to

CO 1	Describe difference calculus with generating function
CO 2	Discuss general results for linear equations
CO 3	Analyze linear difference equations with variable coefficients
CO 4	Verify stability of linear system
CO 5	Explain asymptotic analysis of linear equations

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	М	М	Н	М
CO 2	М	Н	М	Н	М
CO 3	М	М	М	Н	М
CO 4	М	Н	М	Н	М
CO 5	М	Н	М	Н	М
H-High; M-Medium; L-Low					

18PVE201		VALUE EDUCATION: HUMAN RIGHTS	SEM	IESTE F	R – II		
	Course Objective:						
The Co	urse aims						
•		lents to understand the concepts of human					
Credits	:2		T	otal Ho			
UNIT		CONTENTS		Hrs.	CO		
I	of Rights - International C Constitutional	Definition - Historical Evolution - Classifi Universal Declaration of Human Rig ovenants on Economic and Social Rig Provision for Human Rights - Fundar tive Principles of the State Policy - I	hts - ghts - nental	05	CO 1		
II	Freedom - Right Right to Educati to Form Associa Family - Right to Right to Vote a Offices - Right	cal Rights: Right to Work - Right to Pe t to Freedom of Expression - Right to Prop on - Right to Equality - Right to Religion - tions and Unions - Right to Movement - Ri o Contract - Right to Constitutional Reme nd Contest in Elections - Right to Hold to Petition - Right to Information - Rig vernment - Right to Democratic Governance	Right Right to edies - Public ght to	05	CO 2		
III	Economic Right Right to Reason Conditions - Rig	s: Right to Work - Right to Adequate W nable Hours of Work - Right to Fair Wo ght to Self Government in Industry - Cus and Cultural Rights - Right to Life - Rig	ages - orking stomer	05	CO 3		
IV	Women's Right Divorce and Ren Right to Empl Relating to Dow Conditions - Ch Right to Educa Children - Child	s: Right to Inheritance - Right to Marr marry - Right to Adoption - Right to Educa oyment and Career Advancement - I rry - Right for Equality - Right for Safe Wo ildren's Rights - Right to Protection and tion - Issues Related with Infanticide - d Labour - Bonded Labour - Refugees Ri - Dalit Rights - Tribal Rights - Nomads Rig	ation - Rights orking Care - Street ghts -	05	CO 4		
V	Human Rights V Organizations for Commission for Governmental O Terrorism and H	Violation: International, National, Regional o Protect Human Rights - UNO - Na r Human Rights - State Commissions - Organizations and Human Rights - An Iuman Rights - Emergency and Human Ri uman Rights - Media and Human Rights -	Level ational · Non anesty ights -	05	CO 5		

Reference Book			
1.	Paul Singh. Human Rights and Legal System. Himalaya Publishing House, New		
	Delhi.		

After completion of the course, the students will be able to

CO 1	Understand the core principles of human rights philosophy
CO 2	Know the importance and functions of human rights commission
CO 3	Apply their rights for democracy, human rights and gender equality
CO 4	Know the rights from Governance, economic and social development through
	various Acts
CO 5	Understand the right to information, rights for women, children, Nomads,
05	refugees and various sector of people in our country

CAREER COMPETENCY SKILLS - II

SEMESTER – II

Course Objective:				
The Course aims				
To enhance employability skills and to develop career competency				
Total Hours: 15				
UNIT	CONTENTS	Hrs.	CO	
I	Interview Skills – Types of Interview – Groundwork before Interview – Abide by the dress code – Importance of Body language in Interviews – Tell Us about yourself – Do's and Don'ts of an interview – Concluding an Interview – A Mock Interview.	03	CO 1	
п	Resume Preparation – Difference between a Resume and CV – The main body of Resume – The Career objective in Resume – A Fresher's Resume – Antiquity of Soft Skills – Classification of Soft Skills – Personality Analysis – Interpersonal Skills.	03	CO 1	
III	Body Language – Emotion displayed by Body Language – Group Discussion – Group Discussion types – Guidelines Do's and Don'ts during a Group Discussion – Concluding the Discussion – The technique of Summing Up.	03	CO 1	
IV	Speaking Skills – Effective Speaking Guidelines – Reading Skills – Types of Reading Skills – Barriers to Speed Reading – Listening Skills – Stages of Listening – Types of Listening – Barriers to Listening – Beware of Pitfalls – Avoid Errors : Indianisms in English – Most common errors in the world – Similar but not Quite the same – Words that are Singular or Couple.	03	CO 2	
v	Avoid Pitfalls: of Beware Self-improvement - Facilitating Laboratory: Language Techniques and Concepts E-learning	03	CO 3	
Text Book				
1.	<i>Barun K. Mitra.</i> 2011. Personality Development and Soft skills . [S Oxford University Press, New Delhi.	econd E	dition].	
Reference Book				
1.	S.P.Dhanavel. 2015, English and Soft Skills. [Second Edition]. Ori	ent Blac	k Swan	
1.	Publishers, New Delhi.			

After completion of the course, the students will be able to

CO 1	Understand the types of Interviews, Dress Code and Styles
CO 2	Develop Resume content and structures.
CO 3	Improve body language skills.
CO 4	Know how to represent self through communication.
CO 5	Attain the different level of Learning Skills.

SEMESTER - III

Course Objectives:

- To study the concepts of complex functions.
- To learn the development of concept of complex integration.
- To gain the knowledge about singularities and Residues.
- To acquire a knowledge about power series expansions and infinite products.

Credits: 5 To			ours: 60
UNIT	CONTENTS	Hrs.	CO
I	Analytic Functions as Mappings Conformality: Arcs and closed curves – Analytic functions in		
	Regions – Conformal mapping – Length and Area. Linear Transformations: The linear group – The Cross ratio – Symmetry.	12	CO 1
	(Chapter – 3 Sections: 2.1 – 2.4, 3.1 – 3.3)		
	Complex Integration		
	Fundamental theorems: Line integrals – Rectifiable Arcs – Line		
TT	integrals as functions of Arcs – Cauchy's theorem for Rectangle –	10	co a
II	Cauchy's theorem in a Disk. Cauchy's integral formula : The index of a point with respect to	12	CO 2
	a closed curve – The integral formula – Higher Derivatives.		
	(Chapter – 4 Sections: 1.1 - 1.5, 2.1 - 2.3)		
III	 Local Properties of Analytical Functions: Removable Singularities – Zero's and Poles - Taylor's Theorem – The Maximum Principle. The Calculus of Residues: The Residue Theorem – The Argument Principle – Evaluation of Definite Integrals. 	12	CO 3
	(Chapter – 4 Sections: 3.1, 3.2, 3.4, 5.1 - 5.3)		
IV	 Harmonic Functions: Definition and Basic Properties – The Mean- Value property – Poisson's Formula – Schwarz's Theorem – The Reflection Principle. (Chapter - 4 Sections: 6.1 - 6.5) 	12	CO 4
	Series and Product Developments		
V	Power Series Expansions: Weierstrass's Theorem – The Taylor's Series – The Laurent Series. Partial Fractions and Factorization: Partial fractions – Infinite Products. (Chapter – 5 Sections: 1.1 - 1.3, 2.1 – 2.2)	12	CO 5

Text Bo	ook
1.	Lars V.Ahlfors, 1979. Complex Analysis. [Third Edition]. McGraw Hill Book
	Company, New Delhi.
Referen	nce Books
1.	Ponnusamy, S. 1980. Functions of Complex Variables. Narosa Publishing House,
	New Delhi.
2.	Conway, J.B. 1991. Functions of One Complex Variable. [Second Edition].
	Narosa Publishing House, New Delhi.

After completion of the course, the students will be able to

CO 1	Know about analytic functions and bilinear transformations
CO 2	Understand Cauchy's fundamental theorems and Cauchy's integral formula
CO 3	Calculate poles and residues
CO 4	Gain knowledge on harmonic functions and theorems based on harmonic
	functions
CO 5	Expand a function in Taylor's series and Laurent's series

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	М	L	L	Н	
CO 2	Н	Н	L	L	Н	
CO 3	Н	Н	М	L	Н	
CO 4	Н	L	L	L	Н	
CO 5	Н	Н	М	L	Н	
H-High; M-Medium; L-Low						

18PMAM302

SEMESTER – III

Course Objectives:

- To introduce the Equations of motion of a fluid.
- To provide knowledge about two-dimensional flows, three dimensional flows and viscous flows.

Credits	Fotal H	ours: 60	
UNIT	CONTENTS	Hrs.	CO
I	 Introduction: General Description of Fluid Mechanics - Continuum Mechanics - Fluid Properties. Kinematics of Fluids: Methods of Describing Fluid Motion - Translation, Rotation and Rate of Deformation - Streamlines Path Lines and Streak Lines - The Material Derivative and Acceleration - Vorticity. (Chapter - 1 Sections: 1.1 - 1.3) (Chapter - 3 Sections: 3.1 - 3.5) 	12	CO 1
п	 Fundamental Equations of the Flow of Viscous Compressible Fluids: The Equation of Continuity - Conservation of Mass - Equations of Motion (Navier-Stokes Equation) - Conservation of Momentum - The Energy Equation - Conservation of energy. One - Dimensional Inviscid Incompressible flow: Equation of continuity - Stream Tube Flow - Equation of Motion - Euler's Equation - The Bernoulli Equation. (Chapter - 5 Sections: 5.1 - 5.3)(Chapter - 6 Sections: 6.1 - 6.3) 	12	CO 2
III	Two and Three Dimensional, Inviscid Incompressible Flow Basic Equations and Concepts of Flows: Equation of Continuity - Eulerian Equations of Motion - Circulation Theorems - Velocity Potential - Irrotational Flow - Integration of the Equations of Motion - Bernoulli's Equation. Two-Dimensional Flow Examples. (Chapter - 7 Sections: 7.1 - 7.5, 7.12)	12	CO 3
IV	Laminar Flow of Viscous Incompressible Fluids: Similarity of Flows -The Reynolds Number - Flow between Parallel Flat Plates – Couette Flow – Plane Poiseuille Flow Steady Flow in Pipes: Flow between Two Coaxial Cylinders - Flow between Two Concentric Rotating Cylinders. (Chapter – 8 Sections: 8.1, 8.3 – 8.5)	12	CO 4

v	The Laminar Boundary Layer: Properties of the Navier-Stokes Equations - Boundary Layer Concept - The Boundary Layer Equations in Two-Dimensional Flow - The Boundary Layer along a Flat Plate – The Blasius Solution – Shearing Stress and Boundary layer Thickness - Momentum Integral Theorems for the Boundary Layer. (Chapter – 9 Sections: 9.1 – 9.3, 9.5)	12	CO 5		
Text Bo			<u> </u>		
1.	Yuan, S.W. 1969. Foundation of Fluid Mechanics. Prentice-Hall of India Private				
	Limited, New Delhi.				
Referen	nce Books				
1.	Curle. N and Davies. H.J.1968Modern Fluid Dynamics Vol-I"D	Van N	ostrand		
	Company Ltd., London. Princeton, N.J.Toronto.				
2.	Yuan. S.W.1988Foundations of Fluid Mechanics, Prentice- Hall of India, New				
	Delhi.				
3.	Chorlton, F. 1985. Text Book of Fluid Dynamics. Publishers & Dis	stributo	rs, New		
	Delhi.				

After completion of the course, the students will be able to

CO 1	Learn fluid properties and motion of fluids
CO 2	Derive equations of motion for one dimensional flows
CO 3	Gain knowledge of Eulerian equation and circulation theorems
CO 4	Understand the velocity potential and stream function of laminar flow
CO 5	Know about boundary layer equations and Blasius solution

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	Н	Н	Н
CO 2	М	Н	Н	Н	Н
CO 3	М	Н	Н	Н	Н
CO 4	М	Н	Н	Н	Н
CO 5	М	Н	Н	Н	М
H-High; M-Medium; L-Low					

CORE XII: OPTIMIZATION TECHNIQUES

SEMESTER - III

Course Objectives:

- To provide the Mathematical techniques to model and analyze decision problems.
- To provide the effective application of optimization techniques in real life.

Credits	:4	Fotal H	ours: 60
UNIT	CONTENTS	Hrs.	CO
	Advanced Linear Programming		
1	Revised Simplex Method: Development of the Optimality and		
Ι	Feasibility Conditions - Revised Simplex Algorithm - Bounded-	12	CO 1
	Variables Algorithm.		
	(Chapter - 7 Sections: 7.2.1, 7.2.2 and 7.3)		
	Integer Linear Programming		
II	Integer Programming Algorithms:Branch-and-Bound	12	CO 2
11	Algorithm - Cutting Plane Algorithm.	14	02
	(Chapter - 9 Sections: 9.2.1, 9.2.2)		
	Deterministic Dynamic Programming: Recursive Nature of		
	Computation in DP – Forward and Backward Recursion.		
III	Selected DP Applications:Work-Force Size Model - Equipment	12	CO 3
	Replacement Model		
	(Chapter - 10 Sections: 10.1, 10.2, 10.3.2, 10.3.3)		
	Classical Optimization Theory		
	Unconstrained Problems: Necessary and Sufficient Conditions -		
IV	The Newton-Raphson Method.	12	CO 4
1 V	Constrained Problems: Equality Constraints – Inequality	14	04
	Constraints - Karush-Kuhn-Tucker Conditions.		
	(Chapter - 18 Sections: 18.1.1, 18.1.2, 18.2.1, 18.2.2)		
	Non Linear Programming Algorithms		
	Unconstrained Algorithms:Direct Search Method - Gradient		
	method.		
\mathbf{V}	Constrained Algorithms: Separable Programming - Quadratic	12	CO 5
	Programming.		
	(Chapter - 19 Sections: 19.1.1, 19.1.2, 19.2.1, 19.2.2)		
Text Bo			
1.	Hamdy A Taha. 2007. Operations Research: An Introduction. [E	ighth E	dition].
	Prentice Hall of India Private Limited, New Delhi.		

Referer	Reference Books					
1.	Frederick, S. Hillier and Gerald J Lieberman.2007. Introduction to Operations					
	Research. [Eighth Edition]. Tata McGraw Hill Publishing Company Limited,					
	New Delhi.					
2.	Sharma, J.K. 2007. Introduction to Operations Research Theory and					
	Applications. [Third Edition]. MacMillan India Ltd., New Delhi.					

After completion of the course, the students will be able to

CO 1	Solve advanced linear programming problem
CO 2	Find the integer solution of linear programming problem
CO 3	Determine the optimum work force size and optimum replacement period
CO 4	Solve non linear programming problem by using Newton-Raphson, Jacobi and
	Lagrangian methods
CO 5	Gain knowledge on separable and quadratic programming problem

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	Н	Н	Н	М	
CO 2	М	Н	Н	Н	М	
CO 3	М	Н	Н	Н	М	
CO 4	М	Н	Н	Н	М	
CO 5	М	Н	Н	Н	М	
H-High; M-Medium; L-Low						

18PMAEL301

Course Objectives:

- To impart analytical skills, in the areas of Initial and Boundary value problem of Control techniques.
- To serves as a prerequisite for specialized studies and research.

Credits	:4	Fotal H	ours: 50			
UNIT	CONTENTS	Hrs.	CO			
	Introduction: Basic Results of Differential Equations - Fixed					
I	Point Methods. Observability: Linear Systems - Nonlinear	10	CO 1			
-	Systems.	10	001			
	(Chapter - 1 Sections: 1.2, 1.3) (Chapter - 2 Sections: 2.1, 2.2)					
II	Controllability: Linear Systems – Nonlinear systems.	10	CO 2			
	(Chapter - 3 Sections: 3.1, 3.2)	10				
		ity: Linear Systems – Perturbed linear systems – Nonlinear				
III	systems.	10	CO 3			
	(Chapter - 4 Sections: 4.1 – 4.3)					
	Stabilizability: Stabilization via Linear Feedback Control -The					
IV	Controllable Subspace.	10	CO 4			
	(Chapter - 5 Sections: 5.1, 5.2)					
	Optimal Control: Linear Time Varying Systems- Linear Time					
V	Invariant Systems.	10	CO 5			
	(Chapter - 6 Sections: 6.1, 6.2)					
Text Bo						
1.	Balachandran. KandDauer. J.P. 2012.Elements of Control Theory.[S	econd E	Edition].			
	NarosaPublishing House, New Delhi.					
Referen	ice Books					
1.	Conti, R. 1976.Linear Differential Equations and Contr	ol. Ac	ademic			
	Press,London.					
2.	Klamka, J. 1991.Controllability of Dynamical Systems. Kluw	wer Ac	ademic			
	Publisher, Dordrecht.					
3.	Russell, D.L.1979. Mathematics of Finite Dimensional Control Systems	.Marcel	Dekker,			
	New York.					

After completion of the course, the students will be able to

CO 1	Learn about observability of linear and non-linear systems
CO 2	Discuss about controllability Grammian
CO 3	Understand the stability of linear time varying system and perturbed linear systems
CO 4	Stabilize a system via linear feedback control
CO 5	Find optimum control of Riccati equation and linear time invariant systems

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	М	М	Н	М	
CO 2	Н	М	М	Н	М	
CO 3	Н	М	М	Н	М	
CO 4	Н	М	М	Н	М	
CO 5	Н	М	М	Н	М	
H-High; M-Medium; L-Low						

Course	Objective:		
The Co	arse aims		
•	To develop the skills to gain a basic understanding of neural netwo	ork	
Credits	:4	Fotal H	ours: 50
UNIT	CONTENTS	Hrs.	CO
I	 Neuron Model and Network Architectures: Neuron Model – Network Architectures. An Illustrative Example: Perceptron – Hamming Network – Hopfield Network. (Chapter -2 and 3) 	10	CO 1
II	 Perceptron Learning Rule: Learning Rules - Perceptron Architecture - Perceptron Learning Rule - Proof of Convergence. Supervised Hebbian Learning: Linear Associator - The Hebb Rule - Performance Analysis - Pseudoinverse Rule - Application - Variations of Hebbian Learning. (Chapter -4 and 7). 	10	CO 2
III	Performances Surfaces and Optimum Points: Taylor Series – Vector Case - Directional Derivatives – Minima – Necessary Conditions for Optimality – First-Order Conditions – Second- Order Conditions - Quadratic Functions. (Chapter –8).	10	CO 3
IV	Performance Optimization: Steepest Descent - Stable Learning Rates - Minimizing Along a Line - Newton's Method - Conjugate Gradient.BackPropagation:MultilayerPerceptrons-PatternClassification-FunctionApproximation-UsingBackPropagation - Convergence - Generalization.(Chapter - 9and 11)	10	CO 4
V	Associative Learning: Simple Associative Network – Unsupervised Hebb rule – Hebb Rule with Decay - Simple Recognition Network – Instar Rule – Kohonen Rule - Simple Recall Network – Outstar Rule. (Chapter -13)	10	CO 5
Text Bo	ok	L	L
1.	Martin T. Hagan, Howard B. Demuth and Mark Beale, 2010. Ne	eural N	etwork
	Design, Cengage Learning India Private Ltd., New Delhi.		

Reference Books					
1.	James A. Freeman and David M. Skapura, 2003. Neural Networks Algorithms,				
	applications and Programming Techniques, Pearson Education.				
2.	Robert J. Schalkoff,1997. Artificial Neural Network, Mcgraw-Hill International				
	Edition.				

After completion of the course, the students will be able to

CO 1	Learn basic neural network architecture
CO 2	Gain knowledge on Perceptron learning rule and Hebb rule
CO 3	Know about the optimality conditions for various functions
CO 4	Understand the concepts of performance optimization and Backpropagation
CO 5	Learn the concepts of associative learning

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	L	М	L	Н
CO 2	Н	L	L	L	Н
CO 3	Н	L	М	М	Н
CO 4	Н	L	М	М	Н
CO 5	Н	L	L	L	Н
H-High; M-Medium; L-Low					

SEMESTER - III

Course Objectives:

- To enrich the knowledge of students in logical reasoning.
- To give a grip on elementary concepts of number theory
- To provide a sound knowledge about congruence's, Mobius function and Diophantine equations

Credits	: 4	Fotal H	ours: 50	
UNIT	CONTENTS	Hrs.	CO	
	Divisibility: Introduction -Divisibility – Primes.			
Ι	Congruences: Congruences – Solutions of Congruences.	10	CO 1	
	(Chapter - 1 Sections: 1.1 - 1.3) (Chapter - 2 Sections: 2.1, 2.2)			
	Congruences: Prime Power Moduli – Prime Modulus –Primitive			
II	Roots and Power Residues - Congruences of Degree Two, Prime	10	CO 2	
	Modulus.			
	(Chapter - 2 Sections: 2.6 – 2.9)			
	Quadratic Reciprocity: Quadratic Residues - Quadratic			
III	Reciprocity – The Jacobi Symbol – Binary Quadratic Forms.	10	CO 3	
	(Chapter - 3 Sections: 3.1 – 3.4)			
	Some Functions of Number Theory: Greatest Integer Function -			
IV	Arithmetic Functions - The Mobius Inversion Formula -	10	CO 4	
	Recurrence Functions.	20	001	
	(Chapter 4: Sections 4.1 – 4.4)			
	Some Diophantine Equations: The Equation ax + by = c -			
v	Simultaneous Linear Equations - Pythagorean Triangles -	10	CO 5	
	Assorted Examples.			
	(Chapter 5: Sections 5.1 – 5.4)			
Text Bo				
1.	Ivan Niven, Zuckerman, H.S. and Hugh L. Montgomery, 2014. An I			
D (the Theory of Numbers. [Fifth Edition]. Wiley India Private Ltd.,	New De	elhı.	
	Reference Books			
1.	Burton, D.M. 2001. Elementary Number Theory. Universal Book Stall, Ne			
	Delhi.			
2.	Ireland, K.and Rosen, M. 1972. A Classical Introduction to Modern Number			
	Theory. Springer Verlag, New York.			
3.	Apostal, T.M. 1980. Introduction to Analytic Number Th	neory.	Narosa	
	Publication House, Chennai.			

After completion of the course, the students will be able to

CO 1	Learn about divisibility and solution of Congruences
CO 2	Discuss Prime modulus, Primitive roots and Power Residuals
CO 3	Understand the concepts of Quadratic residues and Quadratic Reciprocity
CO 4	Gain knowledge on mobius inverse formula and recurrence functions
CO 5	KnowDiaphantine equations and Pythagorean triangles

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	М	Н	М
CO 2	М	Н	М	Н	М
CO 3	М	Н	М	Н	М
CO 4	М	Н	М	Н	М
CO 5	М	Н	М	Н	М
H-High; N	H-High; M-Medium; L-Low				

18PCSMAI301

INTER DISCIPLINARY COURSE : PROGRAMMING IN C++

SEMESTER – III

Course Objectives:

- To write robust, maintainable, elegant and efficient C++ code.
- To deploy good C++ programming practices.
- To implement advanced Object-Oriented techniques in C++ to realize efficient and flexible applications

Credits	:2	Fotal Ho	ours: 45	
UNIT	CONTENTS	Hrs.	CO	
I	Principles of Object Oriented Programming: Object Oriented Paradigm – Basic concepts of OOP – Benefits of OOP – Applications of OOP – Beginning with C++: Structure of C++ program – Simple C++ program – Compiling and Linking.	cepts of OOP - Benefits of OOP - Beginning with C++: Structure of C++08CO 1		
Π	Tokens, Expressions and Control Structures:Keywords -Identifiers and Constants - Variables - Data Types - Operators -09CO 2Control Structures - Functions in C++.09CO 2			
ш	Classes and Objects: Introduction – Defining Member Function – Arrays within a class – Arrays of Objects – Friendly Functions – Constructors and Destructors: Introduction – Parameterized Constructors – Copy Constructors – Destructors.			
IV	Operator Overloading:Introduction - Rules - OverloadingUnary and Binary Operators - Inheritance:Single - Multilevel -Multiple - Hybrid - Virtual Base Class - s - Virtual Functions.10			
v	Working with Files: Introduction – Opening and Closing a File – File Modes – Sequential Input and Output Operations – Random Access File.	09	CO 5	
Text Bo	ook			
1.	<i>Balagurusamy, E.</i> 2007. Object Oriented Programming with Edition]. Tata McGraw Hill Publishing Company Limited, New D		[Third	
Referen	nce Books			
1.	<i>Ravichandran, D.</i> 2002. Programming with C++ . [Second Edition].Tata McGraw Hill publishing company limited, New Delhi.			
2.	<i>Ira Pohl.</i> 2003. Object oriented Programming using C++ . [Se Pearson Education Asia, New Delhi.			
3.	<i>BjarneStroustrup.</i> 2000. The C++ Programming Language . [Third Edition]. Addison Wesley, Boston.			
4.	<i>John R. Hubbard.</i> 2003. Programming with C++ . Schaums outlin New Delhi.	ne serie	s,TMH,	

After completion of the course, the students will be able to

CO 1	Define the concepts of object oriented programming and its benefits.
CO 2	Apply the class and objects concepts in real time environments.
CO 3	Analyze the complexity of the real world problems and suitable methods to solve it.
CO 4	Apply the effective oops methodology in reducing runtime and coding lines.
CO 5	Manage file operations in different modes according to the requirement.

PSO CO	PSO 1	PSO 1	PSO 1	PSO 1	PSO 1
CO 1	М	М	М	L	L
CO 2	М	М	М	L	L
CO 3	М	М	М	L	L
CO 4	М	М	М	L	L
CO 5	М	М	М	L	L
H-High; N	H-High; M-Medium; L-Low				

INTER DISCIPLINARY COURSE PRACTICAL: PROGRAMMING IN C++

SEMESTER - III

Course Objectives:

The Course aims

- To understand all the object oriented concepts practically.
- To develop the programmatical skill in C++ in real time Applications.

Credits: 2	Credits: 2 Total Hours: 30				
PROGRAM	CONTENTS Hrs		CO		
1	Program for Classes and Objects.	03	CO 1		
2	2 Program for Classes and Objects using Scope Resolution Operator.		CO 1		
3	Program for Inline functions.	03	CO 2		
4	Program for Friend functions.	03	CO 2		
5	Program for Function Overloading.	03	CO 3		
6	Program using Constructor and Destructor.	03	CO4		
7	Program using Operator Overloading.	03	CO4		
8	Program using Pure Virtual Function.	03	CO4		
9	Program for Single and Multiple Inheritances.	03	CO5		
10	Program for Hierarchical and Hybrid Inheritances.	03	CO5		
Web Reference					
https://www.programiz.com/cpp-programming/examples					
https://www.javatpoint.com/cpp-program					
https://www.geeksforgeeks.org/cc-programs					

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Expertisein the Concepts of Class and Object.
CO 2	Work with Inline and Friend functions.
CO 3	Apply the Overloading conceptsin real time applications.
CO 4	Handle Memory management using Constructor and Destructor.
CO 5	Pertain different Types of Inheritance in Applications

18PMAM401		CORE XIII: FUNCTIONAL ANALYSIS	SEM	IESTER	- IV	
Course	Course Objectives:					
The Co	urse aims					
•		ails of Banach and Hilbert Spaces.				
	5	ledge of Orthonormal sets and convergence	o of soc	111000000		
	-	duction of Banach algebras.		fuctices	•	
Credits		duction of balacit digeolas.	7	Cotal H	ours: 60	
UNIT		CONTENTS		Hrs.	CO	
0.011	Banach Spaces:	Definition and Some Examples – Contir	110115	1110.		
I	-	nations – The Hahn-Banach Theorem.	luoub	12	CO 1	
-	(Chapter – 9 Sec				001	
	· •	The Open Mapping Theorem - The Conjug	ate of			
	an Operator. Hilbert spaces: Definition and Some Simple					
II	Properties.	L	1	^{IC} 12 CO 2		
	-	tions: 50 - 51) (Chapter – 10 Section: 52)				
	Hilbert spaces:Orthogonal Complements - Orthonormal Sets -					
III	The Conjugate Space H [*] - The Adjoint of an Operator.			12	CO 3	
	(Chapter - 10 Sections: 53 -56)					
	Hilbert spaces: Self-adjoint Operators - Normal and Unitary					
IV	Operators – Proje			12	CO 4	
	(Chapter – 10 Se					
		inaries on Banach Algebras: Definition				
		- Regular and Singular Elements - Topolo				
V		– The Spectrum - The Formula for the Sp	ectral	12	CO 5	
	Radius.					
	(Chapter – 12 Sections: 64 – 68)					
Text Bo			A 1	• • •	0	
1.		10.Introduction to Topology and Modern	Analy	' S1S. MC	Graw –	
Deferrer	Hill Book Comp	any, London.				
	nce Books	duid C 1007 A First Course in Function		1	Durantian	
1.		edrick, G. 1987. A First Course in Function	ial Alla	alysis. I	renuce	
2.	Hall of India, New Delhi. Bachman, G. and Narici, L. 1966. Functional Analysis. Academic Press, New York.					
<u> </u>		j				
5.		and Sobolev, V.J. 1971. Elements of H	unctio	mai Al	11a1y515.	
1	Hindustan Publishing Corporation, New Delhi.					

Taylor, A.E. 1958. Introduction to Functional Analysis. John Wiley and 4. Sons,New York.

After completion of the course, the students will be able to

CO 1	Extend a functional from a subspace to whole space
CO 2	Discuss open mapping theorem and closed graph theorem
CO 3	Gain knowledge on Schwarz inequality and Bessel's inequality
CO 4	Know about normal and unitary operators
CO 5	Understand Banach algebra and spectral radius

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	Н	L	М	Н	Н		
CO 2	Н	L	М	L	Н		
CO 3	Н	М	М	М	Н		
CO 4	Н	М	М	L	Н		
CO 5	Н	L	М	L	Н		
H-High; N	H-High; M-Medium; L-Low						

CORE XIV: INTEGRAL EQUATIONS AND CALCULUS OF VARIATIONS

SEMESTER - IV

Course Objectives:

- To learn about the concepts of Fredholm and Volterra integral equations.
- To learn the applications of integral equations to Partial differential equations.

Credits	Credits: 4				
UNIT	CONTENTS	Hrs.	CO		
I	 Introduction:Definition – Regularity Conditions-Special Kinds of Kernels– Eigen Values and Eigen Functions- Convolution Integral. Integral Equations with Separable Kernels: Reduction to System of Algebraic Equations – Examples –Fredhlom Alternative –Examples –An Approximate Method. (Chapter - 1 Sections: 1.1 - 1.5) (Chapter – 2 Sections: 2.1 - 2.5) 	12	CO 1		
II	 Methods of Successive Approximations: Iterative Scheme – Examples - Volterra Integral Equation – Examples – Some Results About the Resolvent Kernel. Classical Fredholm Theory: The Method of Solution of Fredholm – Fredholm's First Theorem – Examples. (Chapter - 3 Sections: 3.1 - 3.5) (Chapter - 4 Sections: 4.1 -4.3) 	12	CO 2		
III	Variational Problems with Fixed Boundaries: The Concept of Variation and Its Properties – Euler's Equation – Variational Problems for Functionals of the Form – Functionals Dependent on Higher-Order Derivatives – Functionals Dependent on Functions of Several Independent Variables. (Chapter – 1 Sections: 1.1 - 1.5)	12	CO 3		
IV	Variational Problems with Moving Boundaries: Functional of the Form $_{I[y(x)]=\int_{x_1}^{x_2} F(x,y,y')dx}$ – Variational Problem with a Movable Boundary for a Functional Dependent on Two Functions – One-Sided Variations – Reflection and Refraction of Extremals. (Chapter - 2 Sections: 2.1 – 2.4)	12	CO 4		
V	Sufficient Conditions for an Extremum: Field of Extremals – Jacobi Condition – Weirstrass Function – Legendre Condition. (Chapter – 3 Sections: 3.1 – 3.4)	12	CO 5		

Text Bo	Text Book					
1.	Ram P. Kanwal. 1971. Linear Integral Equations. Academic Press, New York.					
	(For Units I and II)					
2.	Gupta,A.S. 2009. Calculus of Variations with Applications, PHI Learning					
	Private Limited, New Delhi. (For Units III, IV and V)					
Referen	Reference Books					
1.	Raisinghania, M.D. 2009. Integral Equations and Boundary Value Problems.					
	S.Chand& Company Ltd., New Delhi.					
2.	Sneddon, I.N. 1996. Mixed Boundary Value Problems in Potential					
	Theory. Academic Press, North Holland.					

After completion of the course, the students will be able to

CO 1	Find Eigen values and Eigen functions of the integral equations
CO 2	Determine the solution of Volterra integral equations using method of successive approximation
CO 3	Solve variational problems with fixed boundaries
CO 4	Discuss reflection and refraction of Extremals
CO 5	Know the sufficient conditions for Extremals

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	Н	Н	Н	Н	
CO 2	М	Н	Н	Н	Н	
CO 3	М	Н	Н	Н	Н	
CO 4	М	Н	Н	Н	Н	
CO 5	М	Н	Н	Н	Н	
H-High; M-Medium; L-Low						

CORE XV: NUMERICAL ANALYSIS

SEMESTER - IV

Course Objectives:

- To Introduce the concepts of Picard Method.
- To study the methods of solving ODE, PDE and Runge-Kutta methods

UNIT CONTENTS Hrs. CO Numerical Solution to Ordinary Differential Equations : Introduction - Power Series Solution - Pointwise Methods - 1 Solution by Taylor's Series - Taylor's Series Method for 12 CO 1 Simultaneous First Order Differential Equations. (Chapter - 11 Sections: 11.1 - 11.5) 12 CO 1 Taylor'sSeries Method for Higher Order Differential Equations- Picard's Method of Successive Approximations - Picard's 12 CO 2 II Method for Second Order Differential Equations - Picard's Method of Second Order Differential Equations - Picard's Method for Second Order Differential Equations - Picard's Method for Second Order Differential Equations - Picard's Method, for Second Order Differential Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method. (Chapter - 11 Sections: 11.16 - 11.20) 12 CO 3 IV Representation of Partial Difference Quotients - Classification of Partial Difference Quotients - Geometrical Representation of Partial Difference Quotients - Solution to Laplace's Equations + Is Solution - Parabolic Equations - Numerical Solution - It's Solution - Parabolic Equations - Numerical Method.(Chapter - 12 Sections: 12.7 - 12.0) 12 CO 4 Text Boxt V Hyperbolic Equations - Solution to Partial Differential Equations - by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.0) 12 CO 5 Text Boxt Numerical Methods. (Chapter - 12 Se	Credits	Total Hours: 60				
Introduction – Power Series Solution – Pointwise Methods – Solution by Taylor's Series – Taylor's Series Method for Simultaneous First Order Differential Equations. (Chapter - 11 Sections: 11.1 - 11.5) Taylor's Series Method for Higher Order Differential Equations- Picard's Method of Successive Approximations – Picard's Method for Simultaneous First Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9) Runge-Kutta Methods for Simultaneous First Order Equations – Predictor-Corrector Methods - Milne's Method – Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20) III Numerical Solution to Partial Differential Equations – Partial Differential Equations – Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6) V Hyperbolic Equations – Solution to Partial Differential Equations – Problex – 12 Sections: 12.1 - 12.6) Text Book I. V edamurthy V.N., lyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi. Reference Books 1. Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. 2. Jain, M.K. 1983. Numerical Solution of Differential Equations. Jain, M.K. 1983. Numerical Solution of Differential Equation. Method. (Chapter - 12 Sections]. New Age International (P) Ltd., New Delhi.	UNIT	CONTENTS	Hrs.	CO		
ISolution by Taylor's Series - Taylor's Series Method for Simultaneous First Order Differential Equations. (Chapter - 11 Sections: 11.1 - 11.5)12CO 1Taylor's Series Method for Higher Order Differential Equations- Picard's Method of Successive Approximations - Picard's Method for Simultaneous First Order Differential Equations - Picard's Method for Second Order Differential Equations - Picard's Method for Second Order Differential Equations - Picard's Method for Second Order Differential Equations - Predictor-Corrector Methods for Simultaneous First Order Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20)12CO 3IVNumerical Solution to Partial Differential Equations - Partial Differential Equations - Elliptic Equations - Disson's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution to Partial Differential Equations - Hyperbolic Equations - Solution to Partial Differential Equations - Hyperbolic Equations - Solution to Partial Differential Equations - by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BotsRefere= V damurthy V.N., lyengar. S.R.K. and Jain, R.K. 1993. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.Reference Computation. Indir Equation. (P) Ltd., New Delhi.Reference Computation. (P) Ltd., New Delhi.Introduction - Silvin no Partial Differential Equations - (P) Poisson's Equation + It's Solution no Partial Differential Equations - by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)It Vedamurthy V						
Simultaneous First Order Differential Equations. (Chapter - 11 Sections: 11.1 - 11.5)Image: Chapter - 11 Sections: 11.1 - 11.5)Taylor'sSeries Method for Higher Order Differential Equations- Picard's Method of Successive Approximations - Picard's Method for Simultaneous First Order Differential Equations - Picard's Method for Second Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9)12CO 2IIIRunge-Kutta Methods for Simultaneous First Order Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20)12CO 3IVNumerical Solution to Partial Differential Equations - Partial Difference Quotients - Geometrical Introduction - Difference Quotients - Classification of Partial Differential Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - Pyperbolic Equations - Solution to Partial Differential Equations - By Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BookReference BooksIntroduction Picture, New Delhi.Reference BooksIntroduction Picture, New Delhi.Reference BooksIntroduction Picture, New Delhi.Reference WorkIntroduction Picture, New Delhi.Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)Introduction Picture, Solution to Partial Differential Equations - Hyperbolic Equations - Solution to Partial Differential Equations - by Relaxation Method.(Chapter	I					
(Chapter - 11 Sections: 11.1 - 11.5)COTaylor'sSeries Method for Higher Order Differential Equations- Picard's Method of Successive Approximations - Picard's12IIMethod for Simultaneous First Order Differential Equations - Picard's Method for Second Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9)12IIIRunge-Kutta Methods for Simultaneous First Order Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method. (Chapter - 11 Sections: 11.16 - 11.20)12IVNumerical Solution to Partial Differential Equations Bashforth Method. (Chapter - 11 Sections: 11.16 - 11.20)12IVNumerical Solution to Partial Differential Equations - Partial Differential Equations - Classification of Partial Differential Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations - Hyperbolic Equations - Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.12Refererce BooksI1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific 			12	CO1		
IdentifiedTaylor'sSeries Method for Higher Order Differential Equations- Picard's Method of Successive Approximations - Picard's Method for Simultaneous First Order Differential Equations - Picard's Method for Second Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9)12CO 2IIIRunge-Kutta Methods for Simultaneous First Order Equations - Runge-Kutta Methods for Simultaneous First Order Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method. (Chapter - 11 Sections: 11.16 - 11.20)12CO 3IVNumerical Solution to Partial Differential Equations - Representation of Partial Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations - By Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BookIntroductiny V.N. , lyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.Reference BooksI jain, M.K. Jyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. (PublicScood Edition].		-				
Picard's Method of Successive Approximations - Picard'sI2CO 2IIMethod for Simultaneous First Order Differential Equations - Picard's Method for Second Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9)12CO 2IIIRunge-Kutta Methods for Simultaneous First Order Equations - Runge-Kutta Method for Second Order Differential Equation - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20)12CO 3IIINumerical Solution to Partial Differential Equations: Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations - by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BookReference BooksIntroduction Process : (Chapter - 12 Sections: 12.7 - 12.10)Reference BooksI adim. M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.I adim, M.K. 1983. Numerical Solution of Differential Equations. I Jain, M.K. 1983. Numerical Solution of Differential Equations. I Jain, M.K. 1983. Numerical Solution of Differential Equations. I Jain, M.K. 1983. Numerical Solution of Differential Equations.						
IIMethod for Simultaneous First Order Differential Equations - Picard's Method for Second Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9)12CO 2IIIRunge-Kutta Methods for Simultaneous First Order Equations - Runge-KuttaMethod for Second Order Differential Equation - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20)12CO 3IVNumerical Solution to Partial Differential Equations - Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations - By Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BockIIIJain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. Infired Edition]. New Age International (P) Ltd., New Delhi.						
 Picard's Method for Second Order Differential Equations. (Chapter - 11 Sections: 11.6 - 11.9) Runge-Kutta Methods for Simultaneous First Order Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20) Numerical Solution to Partial Differential Equations:						
(Chapter - 11 Sections: 11.6 - 11.9)Image: Chapter - 11 Sections: 11.6 - 11.9)Image: Chapter - 11 Sections: Content Equations - Runge-Kutta Methods for Simultaneous First Order Equations - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method. (Chapter - 11 Sections: 11.16 - 11.20)Image: CO 3Image: Numerical Solution to Partial Differential Equations: Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to 	II	1	12	CO 2		
IIIRunge-Kutta Methods for Simultaneous First Order Equations - Runge-KuttaMethod for Second Order Differential Equation - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20)12CO 3IVNumerical Solution to Partial Differential Equations: Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BookI.Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.12CO 5Reference Books1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].		-				
 III Runge-KuttaMethod for Second Order Differential Equation - Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20) Iu CO 3 Numerical Solution to Partial Differential Equations: Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6) Poisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10) Text Book Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi. Refererce Books Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition]. 						
 III Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method. (Chapter - 11 Sections: 11.16 - 11.20) INumerical Solution to Partial Differential Equations: Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6) Poisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method. (Chapter - 12 Sections: 12.7 - 12.10) Text Book Vedamurthy V.N. , IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi. Reference Books Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition]. 		0				
 Predictor-Corrector Methods - Milne's Method - Adams- Bashforth Method.(Chapter - 11 Sections: 11.16 - 11.20) Numerical Solution to Partial Differential Equations: Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6) Poisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10) Text Book Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi. Refererce Books Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition]. 	III	0	12	CO 3		
IVNumerical Solution to Partial Differential Equations: Introduction – Difference Quotients – Geometrical Representation of Partial Difference Quotients – Classification of Partial Differential Equations – Elliptic Equations – Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter – 12 Sections: 12.1 – 12.6)12CO 4VPoisson's Equation – It's Solution – Parabolic Equations – Hyperbolic Equations – Solution to Partial Differential Equations – by Relaxation Method.(Chapter – 12 Sections: 12.7 – 12.10)12CO 5Text BookReference BooksI.Vedamurthy V.N. , IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.Reference Books1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
Introduction - Difference Quotients - Geometrical Representation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations - by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BooksReference BooksImage: Image:						
IVRepresentation of Partial Difference Quotients - Classification of Partial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)12CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BooksReference BooksImage: Reference BooksJain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].		-		CO 4		
IVPartial Differential Equations - Elliptic Equations - Solution to Laplace's Equation by Liebmann's Iteration Process . (Chapter - 12 Sections: 12.1 - 12.6)I2CO 4VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text BookReferenceReferenceBoilishing House PvtLtd, New Delhi.Image: ReferenceJain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
Laplace's Equation by Liebmann's Iteration Process .Image: Constraint of the state o	IV	1	12			
(Chapter - 12 Sections: 12.1 - 12.6)Image: CO 5Poisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations12VHyperbolic Equations - Solution to Partial Differential Equations12by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)CO 5Text BooksImage: Reference BooksImage: Image: S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
VPoisson's Equation - It's Solution - Parabolic Equations - Hyperbolic Equations - Solution to Partial Differential Equations by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)12CO 5Text Book1.Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.VikasVikas1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific 						
VHyperbolic Equations - Solution to Partial Differential Equations12CO 5by Relaxation Method.(Chapter - 12 Sections: 12.7 - 12.10)1Text BooksVedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. VikasPublishing House PvtLtd, New Delhi.Reference Books1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientificand Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
by Relaxation Method. (Chapter - 12 Sections: 12.7 - 12.10)Text Book1.Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.Reference Books1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].	37		10			
Text Book1.Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi.Reference Books1.Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi.2.Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].	v		12	05		
 Vedamurthy V.N., IyengarN.Ch.S.N. 2011. Numerical Methods. Vikas Publishing House PvtLtd, New Delhi. Reference Books Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition]. 	Tovt Ro					
Publishing House PvtLtd, New Delhi. Reference Books 1. Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. 2. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].			ikas			
Reference Books 1. Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. 2. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
 Jain, M.K., Iyengar, S.R.K. and Jain, R.K. 1993. Numerical Methods for Scientific and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition]. 	Poforor	8				
 and Engineering Computation. [Third Edition]. New Age International (P) Ltd., New Delhi. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition]. 			s for Sc	iontific		
New Delhi. 2. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
2. Jain, M.K. 1983. Numerical Solution of Differential Equations. [Second Edition].						
	2.		Second 1	Edition].		
		· · · · · · · · · · · · · · · · · · ·	-	- 1 .		

After completion of the course, the students will be able to

CO 1	Solve first order ordinary differential equations using Taylor's method
CO 2	Find the solutions of second order ordinary differential equations using Picard's method.
CO 3	Find solutions of simultaneous first and second order differential equations
CO 4	Classify the Partial differential equations and solve it
CO 5	Derive the solutions of the Poisson's equation.

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	М	Н	Н	Н	М		
CO 2	М	Н	Н	Н	М		
CO 3	М	Н	Н	Н	М		
CO 4	М	Н	Н	Н	М		
CO 5	М	Н	Н	Н	М		
H-High; M-Medium; L-Low							

18PMAM404

CORE XVI: FUZZY SETS AND FUZZY LOGIC

SEMESTER - IV

Course Objectives:

- To learn about basic concepts of fuzzy sets.
- To learn about fuzzy relations and measures.
- To learn about general applications of fuzzy logic.

Credits	Fotal Hours: 50		
UNIT	CONTENTS	Hrs.	CO
I	 Crisp Sets And Fuzzy Sets: The Notion of Fuzzy Sets - Basic Concepts of Fuzzy Sets. Operations on Fuzzy Sets: Fuzzy Complement - Fuzzy Union - Fuzzy Intersection - Combinations of Operations - General Aggregation Operations. (Chapter - 1 Sections: 1.3, 1.4) (Chapter - 2 Sections: 2.2 - 2.6) 	10	CO 1
II	Fuzzy Relations: Crisp and Fuzzy Relations – Binary Relations – Binary Relations on a Single Set – Equivalence and Similarity Relations – Compatibility or Tolerance Relations – Orderings – Morphisms – Fuzzy Relation Equations. (Chapter - 3 Sections: 3.1 – 3.8)	10	CO 2
III	Fuzzy Measures: Belief and Plausibility Measures – Probability Measures – Possibility and Necessity Measures – Relationship Among Classes of Fuzzy Measures. (Chapter - 4 Sections: 4.2 – 4.5)	10	CO 3
IV	Uncertainty and Information: Types of Uncertainty – Measures of Fuzziness – Classical Measures of Uncertainty – Measure of Dissonance – Measures of non-specificity. (Chapter - 5 Sections: 5.1 – 5.4, 5.6)	10	CO 4
v	Applications: Natural, Life and Social Sciences – Engineering – Medicine – Management and Decision Making. (Chapter - 6 Sections: 6.2 – 6.5)	10	CO 5
Text Bo			
1.	George J. KlirandTina A. Folger, 2007. Fuzzy Sets, Uncertainty and	d Infor	mation.
Referer	Prentice-Hall of India Private Limited. ce Books		
1.	H.J.Zimmermann, Fuzzy Set Theoryand its [FourthEdition].Springer International Edition.	appli	cations
2.	<i>George J. KlirandBoyuan,</i> Fuzzy Sets and Fuzzy Logic-Theory and Prentice-Hall of India Private Limited.	d Appli	cations.

After completion of the course, the students will be able to

CO 1	Define fuzzy sets and fuzzy complements
CO 2	Illustrate fuzzy relations, binary fuzzy relations and fuzzy equivalence relations
CO 3	Characterize the various of fuzzy measures
CO 4	Classify the uncertainty and information of fuzziness
CO 5	State some applications of fuzzy sets

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	Н	М	М	
CO 2	М	М	Н	М	М	
CO 3	М	М	Н	М	М	
CO 4	М	М	Н	М	М	
CO 5	Н	Н	L	L	L	
H-High; M-Medium; L-Low						

18PMAM405		CORE XV: MATLAB	SEM	IESTER	- IV
Course	Objectives:				
The Co	urse aims				
•	To familiarize the	student in introducing and exploring MA	TLAB	softwar	e
•	To provide a four	ndation in use of this software for real time	e applic	ations.	
Credits	s: 2]	Fotal Ho	ours: 40
UNIT		CONTENTS		Hrs.	CO
I	Introduction:Basics of MATLAB: MATLAB Windows – Online help – Input-Output File Types – Platform Dependence – General Commands. (Chapter - 1 Sections: 1.6.1 - 1.6.6)			08	CO 1
п	Interactive Computation: Matrices and Vectors – Matrix and Array Operations – Command-Line Functions – Using Built-in			08	CO 2
III	IIIProgramming in MATLAB (Scripts and Functions):Script Files - Functions Files - Language- Specific Features - Advanced Data Objects. (Chapter - 4 Sections: 4.1 - 4.4)			08	CO 3
IV	Applications:Linear Algebra: Solving a Linear System – Finding Eigen Values and Eigen Vectors – Matrix Factorizations. (Chapter - 5 Sections: 5.1.1, 5.1.3, 5.1.4)			08	CO 4
v	Applications: Data Analysis and Statistics – Numerical Integration – Ordinary Differential Equations – Nonlinear			08	CO 5
Text Bo	ext Book				
1. <i>RudraPratap</i> , 2010. Getting Started with MATLAB,Oxford University Press, New York.					
Reference Books					
1.	<i>William John Palm</i> , [2005], Introduction to Matlab 7 for Engineers , Mcgraw-Hill Professional.				
2.	. Dolores M. Etter, David C. Kuncicky, and Holly Moore, [2004], Introduction to MATLAB 7, Pearson India, New Delhi.			tion to	

After completion of the course, the students will be able to

CO 1	Gain knowledge on MATLAB		
CO 2	Learn various types of functions in MATLAB		
CO 3	Know the properties of script and function files		
CO 4	Find solutions of the mathematical equations and Eigen values and Eigen		
04	vectors of given matrices.		
CO 5	Solve ordinary differential equations and non-linear algebraic equations.		

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	L	М	М	L	М	
CO 2	L	М	М	L	М	
CO 3	L	L	М	L	М	
CO 4	М	Н	М	Н	М	
CO 5	М	Н	М	Н	М	
H-High; M-Medium; L-Low						

18PMAMP401

SEMESTER - IV

Course Objectives:

The Course aims

- Gain knowledge to solve the differential equations and solve the system of linear equations.
- Learning about to plot for a function.

Credits: 2 Total Hours: 21				
PROGRAM	PROGRAM CONTENTS		CO	
1	Addition of two matrices, finding the determinant of a matrix and finding Eigen values and Eigen vectors of a matrix.	03	CO 1	
2	Straight line fit and exponential curve fitting.	03	CO 2	
3	Solving linear ODE using Euler and Runge-Kutta method.	03	CO 2	
4	Solving non-linear ODE using Newton and RegulaFalsi method.	03	CO 2	
	Solving integral equations using Trapezoidal and Simpson's rule.	03	CO 2	
5	Solving system of equation using matrix method and Gauss Elimination method.	03	CO 3	
6 Calculate mean, median, standard deviation, variance, maximum value, minimum value, range, skewness and kurtosis from the given data.		03	CO 4	
7 Plotting a function (2D & 3D)		03	CO 5	
Reference Book				
1.RudraPratap, 2010. Getting Started with MATLAB,Oxford University Press, New York.			iversity	

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Find Eigen Value and Eigen Vector for a given matrix		
CO 2	Gain knowledge on solving differential equations and integral equations		
CO 3	Know about the concept of solving the system of equations		
CO 4	Find the value of averages and standard deviation of the given data		
CO 5	Plot a diagram for the given function		

GUIDELINES

1. SUBMISSION OF RECORD NOTE BOOKS:

Candidates appearing for Practical Examinations shall submit Bonafide Record Note Books prescribed for Practical, otherwise the candidates will not be permitted to appear for the Practical Examinations.

1. PASSING MINIMUM AND INTERNAL MARK DISTRIBUTION (Theory, Practical)

(i) THEORY

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Theory paper with a passing minimum of 38 marks in External out of 75.

Internal Marks Distribution	[CA- Total Marks: 25]

: 5 Marks
: 5 Marks
: 5 Marks
: 10 Marks
: 25 Marks

(ii) PRACTICAL

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Practical paper with a passing minimum of 30 marks in External out of 60.

Internal Marks Distribution [CA- Total Marks: 40]

Experiment/ Documents	: 10 Marks (10-12 Experiments/Documents)
Attendance	: 5 Marks
Record	: 5 Marks
Internal Examinations	: 20 Marks
Total	: 40 Marks

CAREER COMPETENCY SKILLS METHODOLOGY OF ASSESSMENT

o On Line Objective Examination (Multiple Choice questions) - Semester I

- 100 questions-100 minutes
- Twenty questions from each UNIT.
- On line examination will be conducted at the end of I Semester.

• Viva Voce - Semester II

- The student has to come in proper dress code and he/she should bring 2 copies of resume for the Viva Voce
- The student may be asked to
 - Give Self introduction
 - Submit the resume to the examiner(s) and answer the questions based on it.
 - Speak on any given topic for at least two minutes.
 - Give a presentation for 10 minutes on a topic of their choice.
 - Sit with other students in a group for a discussion.

QUESTION PAPER PATTERN AND MARK DISTRIBUTION (THEORY)

Question Paper Pattern and Mark Distribution (For 75 marks)

 PART - A (5 x 5 = 25 Marks) Answer ALL questions One question from each UNIT with Internal Choice

2. PART – B (5 x 10 = 50 Marks) Answer ALL questions One question from each UNIT with Internal Choice

INTER DISCIPLINARY COURSES OFFERED BY THE DEPARTMENT

(FOR STUDENTS ADMITTED FROM 2018-2019 ONWARDS)

Second Semester						
S. No.	Subject Code	Subject	Offered for the students of			
1	18PMACSI201	Advanced Business Statistics	M.Com. (CA)			
2	18PMACSI201	Discrete Mathematics	M.Sc. Computer Science			
Third S	Third Semester					
3	18PMACCI301/ 18PMACSI301	Resource Management Techniques	M.Com. (CA)/ M.Sc. Computer Science			
4	18PMAENI301	Aptitude and Reasoning	M.A. English			
5	18PMBM303/ 18PBCM303/ 18PBTM303	Biostatistics and Research Methodology	M.Sc. Applied Microbiology M.Sc. Biochemistry/ M.Sc. Biotechnology			
6	18PMBMP301/ 18PBCMP301/ 18PBTMP301	Practical: Statistical Software	M.Sc. Applied Microbiology M.Sc. Biochemistry/ M.Sc. Biotechnology			

IDC I: ADVANCED BUSINESS STATISTICS

SEMESTER - II

Course Objective:

The Course aims

• To create knowledge of analyzing the data based on sample information and making interpretation about the population.

Credits	:4 7	otal Ho	ours: 50
UNIT	CONTENTS	Hrs.	CO
I	Statistics: Definition - Limitations and Uses –Collection of Data – Classification and Tabulation of Data - Diagrammatic and Graphical Presentation of Data - Measures of Central Value: Mean - Median and Mode.	10	CO 1
п	Correlation Analysis: Types of Correlation - Methods of studying Correlation - Karl Pearson's Correlation Co-efficient- Rank Correlation Co-efficient. Regression Analysis:Regression Lines - Regression Equations.	10	CO 2
ш	Test of Hypothesis: Procedure of testing hypothesis – Standard error and sampling distribution – Test of Significance for attributes Large samples – Test of significance for small samples.	10	CO 3
IV	Testing of Significance - Parametric Tests - Chi-Square Test - Uses of Chi-Square Test - F Test - ANOVA - One Way Classification - Two Way Classification.	10	CO 4
v	Multivariate Analysis - Partial Correlation, Multiple Correlation and Multiple Regression - Discriminant Analysis - Introduction - Factor Analysis - Terminologies - Centroid Method, Cluster Analysis (Concept only).	10	CO 5
Text Bo	oks		
1.	Gupta, S.P. Statistical Methods.Sultan Chand and Sons, New Delh	ui.	
2.	<i>Panneerselvam, R.</i> 2010, Research Methodology . PHILearning Pr New Delhi.	rivate L	imited,
Referer	nce Books		
1.	Sancheti, D.C and Kapoor V.K. 2005. Statistics.[Seventh Edition]. Sul- Sons, New Delhi.		
2.	<i>Kapoor, V.K and Gupta, S.C.</i> Fundamentals of Mathematical Statistics. [Eleventh Edition]. Sultan Chand and Sons, New Delhi.		
3.	<i>Kapoor, V.K and Gupta, S.P.</i> Elements of Mathematical Statistics and Sons, New Delhi.	s.Sultan	Chand

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics and understand the concepts of measures of
	central tendency
CO 2	Find the correlation between the set of values
CO 3	Know about the concepts of sampling theory
CO 4	Test the research statements through ANOVA.
CO 5	Gain knowledge on multivariate analysis

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	Н	L	L	
CO 2	Н	М	L	М	L	
CO 3	Н	Н	М	L	М	
CO 4	L	Н	М	Н	Н	
CO 5	М	М	L	М	М	
H-High; M-Medium; L-Low						

18PMACSI201

IDC I:DISCRETE MATHEMATICS

SEMESTER - II

Course Objectives:							
The Co	The Course aims						
•	 To introduce mathematical logics and theory of automata 						
•	To introduce basic concepts of graph theory						
Credits	:4	Fotal H	ours: 50				
UNIT	CONTENTS	Hrs.	CO				
I	Logic – Introduction – TF-statements – Connectives – Atomic and Compound statements – Well formed formulae – Truth table of a formula – Tautology. (Chapter – 9 Sections: 1 – 7)	10	CO 1				
II	Tautological implications and equivalence of formulae – Replacement process – Functionally complete sets of connectives and duality law – Normal forms – Principal normal forms. (Chapter – 9 Sections: 8 - 12)	10	CO 2				
III	Theory of inference – Open statements – Quantifiers. (Chapter – 9 Sections: 13 – 15)	10	CO 3				
IV	Boolean algebra – Boolean polynomials – Karnaugh map (K-map for 5 variables and 6 variables are not included) – Switching circuits (Simple circuits). (Chapter: 10 Sections: 5 – 8)	10	CO 4				
V	Graph Theory – Basic concepts – Matrix representation of graphs – Trees – Spanning trees. (Chapter: 11 Sections: 1 – 4)	10	CO 5				
Text Bo							
1. <i>Venkataraman, M.K. Sridharan, N. and Chandrasekaran, N.,</i> 2000. Discrete Mathematics. The National Publish Company, New Delhi.							
2. <i>Mishra, K.L.P., and Chandrasekaran, N.,</i> 2001. Theory of Computer Sciences. [Second Edition]. Prentice Hall of India Private Limited, New Delhi.							
Reference Book							
1.	<i>Trembley, J.P. and Manohar, R.,</i> 1975. Discrete Mathematical S applications to computer Science. International Edition, Publication.						

After completion of the course, the students will be able to

CO 1	Learn the concepts of logic
CO 2	Discuss various normal forms
CO 3	Understand the concepts of inference theory
CO 4	Construct Karnaugh map and switch circuits
CO 5	Know the concepts of graphs and trees

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	М	Н	М	L	
CO 2	Н	М	Н	М	L	
CO 3	М	Н	М	L	М	
CO 4	М	Н	Н	L	М	
CO 5	М	Н	Н	М	М	
H-High; M-Medium; L-Low						

18PMACSI301

IDC II: RESOURCE MANAGEMENT TECHNIQUES

SEMESTER – III

Course Objectives:

- To know the concepts of mathematical formulation and solving.
- To find solution of Transportation and Assignment models.
- To introduce inventory model, Replacement model.
- To learn the concepts in CPM and PERT.

Credits	Credits: 4				
UNIT	CONTENTS	Hrs.	CO		
Ι	Linear Programming Problem: Introduction –Linear Programming Problem – Mathematical Formulation of the problem - Illustration on Mathematical Formulation of LPPs - Graphical Solution method – Some Exceptional cases – General Linear Programming Problem – Canonical and Standard forms of LPP - The Simplex method: The Simplex Algorithm and Problems – The Big-M method. (Chapter – 2)(Chapter 3 Sections: 3.2 – 3.5) (Chapter – 4 Sections: 4.3 – 4.4)	10	CO 1		
II	 Transportation Model: Introduction - Formulation of the Transportation Problem -Finding an initial basic feasible solution - Degeneracy in Transportation Problem - Transportation algorithm (MODI method) -Unbalanced Transportation Problems - Maximization case in Transportation problems. Assignment Problems: Introduction - Mathematical formulation of the Problem - Assignment algorithm (Hungarian method) - Unbalanced Assignment Models - Maximization case in Assignment Problems. (Chapter - 10 Sections: 10.1, 10.2, 10.9, 10.12, 10.13, 10.15) (Chapter - 11 Sections: 11.1 - 11.4) 	10	CO 2		
III	Replacement Problem and System Reliability: Introduction – Replacement of Equipment that Deteriorates Gradually – Replacement of Equipment that fails suddenly –Reliability and system Failure Rates (Chapter – 18 Sections: 18.1 – 18.3,18.6)	10	CO 3		
IV	Inventory Control -I : Introduction – Types of Inventories – Reasons for Carrying Inventories –The Inventory Decisions – Costs Associated with Inventories–FactorsAffecting Inventory Control – The Concept of EOQ - Deterministic Inventory	10	CO 4		

	Problems With No Shortages - Deterministic Inventory				
	Problems With Shortages.				
	(Chapter – 19 Sections: 19.1 – 19. 4, 19.6-19.7, 19.9-19.11)				
	Network Scheduling by PERT /CPM: Introduction - Basic				
	Components - Logical Sequencing - Rules of				
v	NetworkConstruction- Concurrent Activities - Critical Path	10	CO 5		
v	Analysis -Probability Considerations in PERT - Distinction	10	05		
	between PERT and CPM.				
	(Chapter – 25 Sections: 25.1 – 25.8)				
Text Bo	ook				
1.	KantiSwarup, Gupta, P.K.and Man Mohan. 2014. Operations Re	esearch.	Sultan		
	Chand & Sons, New Delhi.				
Referer	nce Books				
1.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2014. Resource				
	Management Techniques. [Eighth Edition]. AR Publication, Chen	mai.			
2.	Sharma, J.K. 2007. Introduction to Operations Research	Theor	y and		
	Applications. [Third Edition]. MacMillan India Ltd., New Delhi.		-		

After completion of the course, the students will be able to

CO 1	Formulate and solve real life problems through LPP
CO 2	Find the optimum transportation schedule and assignment model
CO 3	Know the concepts of replacement policies
CO 4	Gain knowledge of keeping optimum stockhold
CO 5	Use the techniques for planning and scheduling of projects

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5			
CO 1	Н	М	М	М	L			
CO 2	М	Н	М	М	М			
CO 3	М	Н	Н	М	L			
CO 4	М	Н	Н	Н	М			
CO 5	L	Н	М	М	Н			
H-High; M-Medium; L-Low								

18PMACCI301

IDC II: RESOURCE MANAGEMENT TECHNIQUES

SEMESTER – III

Course Objectives:

- To know the concepts of mathematical formulation and solving.
- To find solution of Transportation and Assignment models.
- To introduce inventory model, Replacement model.
- To learn the concepts in CPM and PERT.

Credits	Credits: 4 Total Hours: 50			
UNIT	CONTENTS	Hrs.	CO	
I	Linear Programming Problem: Introduction –Linear Programming Problem – Mathematical Formulation of the problem - Illustration on Mathematical Formulation of LPPs - Graphical Solution method – Some Exceptional cases – General Linear Programming Problem – Canonical and Standard forms of LPP - The Simplex method: The Simplex Algorithm and Problems – The Big-M method. (Chapter – 2)(Chapter 3 Sections: 3.2 – 3.5) (Chapter – 4 Sections: 4.3 – 4.4)	10	CO 1	
Π	 Transportation Model: Introduction - Formulation of the Transportation Problem -Finding an initial basic feasible solution - Degeneracy in Transportation Problem - Transportation algorithm (MODI method) -Unbalanced Transportation Problems - Maximization case in Transportation problems. Assignment Problems: Introduction - Mathematical formulation of the Problem - Assignment algorithm (Hungarian method) - Unbalanced Assignment Models - Maximization case in Assignment Problems. (Chapter - 10 Sections: 10.1, 10.2, 10.9, 10.12, 10.13, 10.15) (Chapter - 11 Sections: 11.1 - 11.4) 	10	CO 2	
III	Replacement Problem and System Reliability: Introduction – Replacement of Equipment that Deteriorates Gradually – Replacement of Equipment that fails suddenly – Reliability and system Failure Rates (Chapter – 18 Sections: 18.1 – 18.3,18.6)	10	CO 3	
IV	Inventory Control -I : Introduction – Types of Inventories – Reasons for Carrying Inventories –The Inventory Decisions – Costs Associated with Inventories–FactorsAffecting Inventory Control – The Concept of EOQ - Deterministic Inventory	10	CO 4	

	Problems With No Shortages - Deterministic Inventory			
	Problems With Shortages.			
	(Chapter – 19 Sections: 19.1 – 19. 4, 19.6-19.7, 19.9-19.11)			
	Network Scheduling by PERT /CPM: Introduction - Basic			
	Components - Logical Sequencing - Rules of			
v	NetworkConstruction- Concurrent Activities - Critical Path	10	CO 5	
v	Analysis -Probability Considerations in PERT - Distinction	10		
	between PERT and CPM.			
	(Chapter – 25 Sections: 25.1 – 25.8)			
Text Bo	ok			
1.	KantiSwarup, Gupta, P.K.and Man Mohan. 2014. Operations Re	esearch.	Sultan	
	Chand & Sons, New Delhi.			
Referer	nce Books			
1.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2	.014. R	esource	
	Management Techniques. [Eighth Edition]. AR Publication, Chen	nai.		
2.	Sharma, J.K. 2007. Introduction to Operations Research	Theor	y and	
	Applications. [Third Edition]. MacMillan India Ltd., New Delhi.		-	

After completion of the course, the students will be able to

CO 1	Formulate and solve real life problems through LPP
CO 2	Find the optimum transportation schedule and assignment model
CO 3	Know the concepts of replacement policies
CO 4	Gain knowledge of keeping optimum stockhold
CO 5	Use the techniques for planning and scheduling of projects

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	М	Н	L	L
CO 2	Н	М	L	М	L
CO 3	Н	Н	М	L	М
CO 4	L	Н	М	Н	Н
CO 5	М	М	L	М	М
H-High; N	H-High; M-Medium; L-Low				

IDC I:APTITUDE AND REASONING

Course Objective:				
The Course aims				
•	To equip the students for writing competitive examinations			
Credits	:4	fotal H	ours: 40	
UNIT	CONTENTS	Hrs.	CO	
Ι	Series completion – Coding-Decoding – Blood relations. (Chapter 1, Chapter 4 and Chapter 5)	08	CO 1	
II	Puzzle Test - Direction sense test - Logical Venn Diagram. (Chapter 6, Chapter 8 and Chapter 9)	08	CO 2	
III	Number Ranking and Time Sequence Test – Mathematical operation. (Chapter 12 and Chapter 13)	08	CO 3	
IV	Logical sequence of words – Arithmetical Reasoning – Inserting the missing character (Chapter 14, Chapter 15 and Chapter 16)	08	CO 4	
V	Data Sufficiency – Situation Reaction Test. (Chapter 17 and Chapter 20)	08	CO 5	
Reference Book				
1.	<i>Agarwal, R.S., 2011.</i> A Modern Approach to Verbal and Non-Ver S.Chand& Company Ltd., New Delhi.	bal Rea	soning,	

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Gain knowledge on coding and decoding
CO 2	Perform mathematical operations and finding solutions to puzzles
CO 3	Find the pattern of given numerical series
CO 4	Predict the logical sequence of given words and missing characters
CO 5	Answer with his presence of mind.

MAPPING

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	L	L	L	L
CO 2	Н	Н	Н	Н	Н
CO 3	Н	Н	Н	Н	Н
CO 4	М	М	М	М	М
CO 5	М	М	L	М	L
H-High; N	H-High; M-Medium; L-Low				

CORE: BIOSTATISTICS AND **RESEARCH METHODOLOGY**

SEMESTER - III

Course	Objectives:			
The Course aims				
•	To learn the strategies of research field and also to provide	knowle	edge to	
	understand the role of statistics in research.		0	
Credit	s: 4		Fotal Hours: 50	
UNIT	CONTENTS	Hrs.	CO	
Ι	 Statistics: Introduction – Definition of Statistics – Functions of Statistics – Applications and Limitations of Statistics. Collection of data: Primary and Secondary Data – Methods of Collecting Primary Data – Sources of Secondary Data. Classification and Tabulation of data: Types of Classification – Tabulation of Data – Parts of a Table - Types of Tables. Diagrammatic and Graphical Representation: Types of Diagrams – Graphs – Graphs of Frequency Distributions. Measures of Central Tendency: Arithmetic Mean (except weighted mean and corrected values) – Median – Mode – Merits and demerits. (Volume 1: Chapters 1, 3, 5, 6 and 7) 	10	CO 1	
II	 Measures of Dispersion: Mean Deviation – Standard Deviation Coefficient of Variation. Correlation Analysis: Types of Correlation – Methods of Correlation - Karl Pearson's Coefficient – Rank Correlation Coefficient. Regression Analysis: Regression Lines – Regression Equations. (Volume 1: Chapters 8, 10 and 11) 	10	CO 2	
III	Test of Hypothesis: Population – Sample – Procedure of Testing Hypothesis – Types of errors – Standard Error - t test – F test – Chi-square Test of Independence of Attributes. Analysis of Variance: One way Classification – Two way Classification. (Volume 2: Chapter 3, 4 and 5)	10	CO 3	
IV	Research – Planning and Classification, Components of research report, Essential steps in research. Problem Identification& Formulation, Research Question, Hypothesis - Qualities of a good Hypothesis, Null Hypothesis& Alternative Hypothesis. Experimental design. Literature collection – and its importance.	10	CO 4	

Preparing proposal for a research project. Scientific Research report writing– writing Introduction, Review of literature, Materials and methods, Results, Table, Figures, Discussion, Citing and listing references. Format of a Thesis. Preparation of manuscript for publication. Scientific information-Introduction,	10	CO 5		
	1 1. 1			
Gupta, S.P. 2008. Statistical Methods. Sultan Chand and Sons Publishers, New				
Gurumani, N.2006. ResearchMethodology.MJPPublishers. (UNIT	IV).			
<i>Gurumani</i> , N. 2016. Scientific thesis writing and paper presentation. MJP				
Publishers. (UNIT V)				
Reference Books				
1. Gurumani, N. 2008. An Introduction to Biostatistics. [Second edition], MJP				
Publishers, Chennai.				
Antonisamy, B., SolomonChristopher and Prasanna Samuel. 2010.	Biosta	atistics:		
Principles and Practice. Tata McGrawHill EducationPrivateLtd, New Delhi.				
Padmini E.2007.Biochemical Calculations&Biostatistics. [FirstE	dition].	Books		
-				
	.NewA	ge		
Publications. New Delhi	•	0		
	report writing- writing Introduction, Review of literature, Materials and methods, Results, Table, Figures, Discussion, Citing and listing references. Format of a Thesis. Preparation of manuscript for publication. Scientific information-Introduction, Writing proposals, scientific papers and figures. Plagiarism. oks <i>Gupta, S.P.</i> 2008. Statistical Methods. Sultan Chand and Sons Pr Delhi. (UNITS I - III) <i>Gurumani,</i> N.2006. ResearchMethodology .MJPPublishers. (UNIT <i>Gurumani,</i> N. 2016. Scientific thesis writing and paper presentation Publishers. (UNIT V) ce Books <i>Gurumani,</i> N. 2008. An Introduction to Biostatistics. [Second Publishers, Chennai. <i>Antonisamy, B., SolomonChristopher andPrasannaSamuel.</i> 2010. Principles andPractice .Tata McGrawHill EducationPrivateLtd, No <i>Padmini E.</i> 2007. Biochemical Calculations&Biostatistics. [FirstE andAllied (P)Ltd., Kolkata. <i>Kothari,C.R.</i> 1990. ResearchMethodology-MethodsandTechniques	report writing- writing Introduction, Review of literature, Materials and methods, Results, Table, Figures, Discussion, Citing and listing references. Format of a Thesis. Preparation of manuscript for publication. Scientific information-Introduction, Writing proposals, scientific papers and figures. Plagiarism. oks <i>Gupta, S.P.</i> 2008. Statistical Methods. Sultan Chand and Sons Publisher Delhi. (UNITS I - III) <i>Gurumani,</i> N.2006. ResearchMethodology .MJPPublishers. (UNIT IV) . <i>Gurumani,</i> N. 2016. Scientific thesis writing and paper presentation. MJP Publishers. (UNIT V) ce Books <i>Gurumani,</i> N. 2008. An Introduction to Biostatistics. [Second edition Publishers, Chennai. <i>Antonisamy, B., SolomonChristopher andPrasannaSamuel.</i> 2010. Biostatistics Principles andPractice .Tata McGrawHill EducationPrivateLtd, New Delh <i>Padmini E.</i> 2007. Biochemical Calculations&Biostatistics. [FirstEdition]. andAllied (P)Ltd., Kolkata. <i>Kothari,C.R.</i> 1990. ResearchMethodology-MethodsandTechniques .NewAg		

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics and Understand the concepts of measures of
	central tendency and measures of dispersion
CO 2	Gain knowledge on correlation and regression analyses
CO 3	Test the research statements through ANOVA.
CO 4	Select the appropriate procedure for carrying out their research work
CO 5	Understand the concepts in writing thesis, proposal and result interpretation

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	Н	М	М
CO 2	Н	М	Н	М	М
CO 3	М	Н	Н	М	М
CO 4	Н	Н	Н	Н	Н
CO 5	М	М	Н	Н	Н
H-High; M-Medium; L-Low					

CORE: BIOSTATISTICS AND RESEARCH METHODOLOGY

SEMESTER - III

Course	Objective:					
The Co	The Course aims					
• To learn the strategies of research field and also to provide knowledge to understand the role of statistics in research.						
Credits	: 4Total Hours: 50					
UNIT	CONTENTS	Hrs.	CO			
Ι	 Statistics: Introduction – Definition of Statistics – Functions of Statistics – Applications and Limitations of Statistics. Collection of data: Primary and Secondary Data – Methods of Collecting Primary Data – Sources of Secondary Data. Classification and Tabulation of data: Types of Classification – Tabulation of Data – Parts of a Table - Types of Tables. Diagrammatic and Graphical Representation: Types of Diagrams – Graphs – Graphs of Frequency Distributions. Measures of Central Tendency: Arithmetic Mean (except weighted mean and corrected values) – Median – Mode – Merits and demerits. (Volume 1: Chapters 1, 3, 5, 6 and 7) 	10	CO 1			
II	 Measures of Dispersion: Mean Deviation – Standard Deviation – Coefficient of Variation. Correlation Analysis: Types of Correlation – Methods of Correlation - Karl Pearson's Coefficient – Rank Correlation Coefficient. Regression Analysis: Regression Lines – Regression Equations. (Volume 1: Chapters 8, 10 and 11) 	10	CO 2			
III	Test of Hypothesis: Population – Sample – Procedure of Testing Hypothesis – Types of errors – Standard Error - t test – F test – Chi-square Test of Independence of Attributes. Analysis of Variance: One way Classification – Two way Classification. (Volume 2: Chapter 3, 4 and 5)	10	CO 3			
IV	Research – Planning and Classification, Components of research report, Essential steps in research. Problem Identification& Formulation, Research Question, Hypothesis - Qualities of a good Hypothesis, Null Hypothesis& Alternative Hypothesis. Experimental design. Literature collection – and its importance.	10	CO 4			

v	Preparing proposal for a research project. Scientific Research report writing- writing Introduction, Review of literature, Materials and methods, Results, Table, Figures, Discussion, Citing and listing references. Format of a Thesis. Preparation of manuscript for publication. Scientific information-Introduction, Writing proposals, scientific papers and figures. Plagiarism.			
Text Bo	oks			
1.	Gupta, S.P. 2008. Statistical Methods. Sultan Chand and Sons Pr	ublisher	s, New	
	Delhi. (UNITS I – III)			
2.	<i>Gurumani, N.</i> 2006. ResearchMethodology.MJPPublishers. (UNIT	IV).		
3.	Gurumani, N. 2016. Scientific thesis writing and paper presentation	n. MJP		
	Publishers. (UNIT V)			
Referen	nce Books			
1.	Gurumani, N. 2008. An introduction to Biostatistics. [Second	editior	n], MJP	
	Publishers, Chennai.			
2.	Antonisamy, B., SolomonChristopher andPrasannaSamuel. 2010.	Biosta	atistics:	
	Principles and Practice. Tata McGrawHill Education Private Limited	d, New 1	Delhi.	
3.	Padmini E.2007.Biochemical Calculations&Biostatistics. [FirstE	dition].	Books	
	andAllied (P)Ltd., Kolkata.			
4.	Kothari, C.R. 1990. Research Methodology-Methods and Techniques	.NewA	ge	
	Publications. New Delhi			

After completion of the course, the students will be able to

	Learn the importance of statistics and Understand the concepts of measures of		
CO 1	•		
	central tendency and measures of dispersion		
CO 2	Gain knowledge on correlation and regression analyses		
CO 3	Test the research statements through ANOVA.		
CO 4	Select the appropriate procedure for carrying out their research work		
CO 5	Understand the concepts in writing thesis, proposal and result interpretation		

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	М	М	Н	Н
CO 2	L	М	М	Н	Н
CO 3	L	М	Н	Н	Н
CO 4	L	Н	Н	Н	Н
CO 5	L	Н	Н	Н	Н
H-High; N	H-High; M-Medium; L-Low				

18PBTM303

CORE: BIOSTATISTICS AND RESEARCH METHODOLOGY

SEMESTER - III

COURSE OBJECTIVES: The Course aims To learn the strategies of research field and also to provide knowledge to understand the role of statistics in research. Credits: 4 Total Hours: 50 UNIT **CONTENTS** Hrs. CO Statistics: Introduction - Definition of Statistics - Functions of Statistics - Applications and Limitations of Statistics. Collection of data: Primary and Secondary Data – Methods of Collecting Primary Data – Sources of Secondary Data. Classification and Tabulation of data: Types of Classification -Tabulation of Data - Parts of a Table - Types of Tables. Ι 10 CO1 Diagrammatic and Graphical Representation: Types of Diagrams - Graphs - Graphs of Frequency Distributions. Measures of Central Tendency: Arithmetic Mean (except weighted mean and corrected values) - Median - Mode - Merits and demerits. (Volume 1: Chapters 1, 3, 5, 6 and 7) Measures of Dispersion: Mean Deviation - Standard Deviation - Coefficient of Variation. Correlation Analysis: Types of Correlation - Methods of Π 10 CO 2 Correlation - Karl Pearson's Coefficient - Rank Correlation Coefficient. **Regression Analysis:** Regression Lines – Regression Equations. (Volume 1: Chapters 8, 10 and 11) Test of Hypothesis: Population – Sample – Procedure of Testing Hypothesis - Types of errors - Standard Error - t test - F test -Chi-square Test of Independence of Attributes. III 10 CO 3 Analysis of Variance: One way Classification - Two way Classification. (Volume 2: Chapter 3, 4 and 5) Research- Planning and Classification, Components of research report, Essential steps in research. Problem Identification& IV Formulation, Research Question, Hypothesis- Qualities of a 10 **CO**4 good Hypothesis, Null Hypothesis& Alternative Hypothesis. Experimental design. Literature collection - and its importance. V Preparing proposal for a research project. Scientific Research 10 CO 5

	report writing- writing Introduction, Review of literature,				
	Materials and methods, Results, Table, Figures, Discussion,				
	Citing and listing references. Format of a Thesis. Preparation of				
	manuscript for publication. Scientific information-Introduction,				
	Writing proposals, scientific papers and figures. Plagiarism.				
Text Bo					
1.	Gupta, S.P. 2008. Statistical Methods. Sultan Chand and Sons Publishers, New				
	Delhi. (UNITS I – III)				
2.	Gurumani, N.2006. ResearchMethodology.MJPPublishers. (UNIT IV).				
3.	<i>Gurumani</i> , N. 2016. Scientific thesis writing and paper presentation. MJP				
	Publishers. (UNIT V)				
Referer	ice Books				
1.	Gurumani, N. 2008. An introduction to Biostatistics. [Second edition], MJP				
	Publishers, Chennai.				
2.	Antonisamy, B., SolomonChristopher and PrasannaSamuel. 2010. Biostatistics:				
	Principles and Practice. Tata McGrawHill EducationPrivateLtd, New Delhi.				
3.	Padmini E.2007.Biochemical Calculations&Biostatistics. [FirstEdition]. Books				
	andAllied (P)Ltd., Kolkata.				
4.	Kothari, C.R. 1990. Research Methodology-Methodsand Techniques. New Age				
	Publications. New Delhi				

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics and Understand the concepts of measures of		
	central tendency and measures of dispersion		
CO 2	Gain knowledge on correlation and regression analyses		
CO 3	Test the research statements through ANOVA.		
CO 4	Select the appropriate procedure for carrying out their research work		
CO 5	Understand the concepts in writing thesis, proposal and result interpretation		

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	Н	М	Н	Н
CO 2	L	М	L	Н	Н
CO 3	L	Н	М	Н	Н
CO 4	Н	М	Н	Н	Н
CO 5	Н	М	М	Н	Н
H-High; M	H-High; M-Medium; L-Low				

18PMBMP302/ 18PBCMP302/ 18PBTMP302		CORE PRACTICAL IV: STATISTICAL SOFTWARE	SEMESTER - III	
Course Object	ive:			
The Course ain	ns			
• To giv	e a good g	rip on concepts in analyzing the data using sta	atistical sof	tware
Credit: 2Total	Hours: 24			
PROGRAM		CONTENTS	Hrs.	CO
1	Diagram	s and graphs	03	CO 1
2	Measures of Central Tendency			CO 2
3	Measures of Dispersion			CO 2
4	Correlation Coefficient (Karl Pearson and Spearman Rank Method)			CO 3
5	Regression lines		03	CO 3
6	Small Sample Test (t and F)		03	CO 4
7	Chi-square Test for Independence of Attributes.		03	CO 4
8	ANOVA (one way and two way classification)			CO 4
Reference Books				
1.	Shentan J. Coakes, Lyndall Steed and PetaDzidic.SPSS 13.0 version for			
	Windows analysis without Anguish. John Wiley & Sons, Australia.			
2.	Andy Field. 2006. Discovering Statistics using SPSS. [Second			Edition].

After completion of the course, the students will be able to

SAGE Publications.

CO 1	Demonstrate the data in diagrammatic and graphical representation
CO 2	Find the averages and measures dispersion
CO 3	Calculate correlation and regression for huge amount data
CO 4	Gain knowledge about test of significance

ALLIED COURSES OFFERED BY THE DEPARTMENT (FOR STUDENTS ADMITTED FROM 2018-2019 ONWARDS)

First Sen	nester		
S. No.	Subject Code	Subject	Offered for the students of
1	18UMACSA101/ 18UMAECA101	Algebra and Calculus	B.Sc. Computer Science & B.Sc. Electronics and Communications
2	18UMACAA101	Mathematics for Computer Applications	BCA
3	18UMAPHA101/ 18UMACHA101	Algebra and Differential Calculus	B.Sc. Physics B.Sc. Chemistry
4	18UMABAA101	Business Mathematics and Statistics	BBA
Second S	bemester		
S. No.	Subject Code	Subject	Offered for the students of
5	18UMACSA201/ 18UMAECA201	Numerical Methods	B.Sc. Computer Science & B.Sc. Electronics and Communications
6	18UMACAA201	Scientific Computing Methods	BCA
7	18UMAPHA201/ 18UMACHA201	Integral Calculus and Vector Calculus	B.Sc. Physics B.Sc. Chemistry
Third Se	mester		
8	18UMACS301	Statistical Methods	B.Sc. Computer Science
9	18UMABAA301	Operations Research	BBA
10	18UMACOA301/ 18UMACCA301	Business Mathematics and Operations Research	B.Com & B.Com CA
11	18UMANM301	NMEC: Quantitative Aptitude	All UG Courses
Fourth S	emester		
12	18UMACSA301	Operations Research	B.Sc. Computer Science
13	18UMACOA401/ 18UMACCA401	Business Statistics	B.Com. & B.Com CA
14	18UMAMBA401/ 18UMABCA401/ 18UMABTA401	Biostatistics	B.Sc. Microbiology B.Sc. Biochemistry B.Sc. Biotechnology
15	18UMAMBAP401/ 18UMABCAP401/ 18UMABTAP401	Practical: Statistical Software (Using MS-Excel)	B.Sc. Microbiology B.Sc. Biochemistry B.Sc. Biotechnology
16	18UMANM401	NMEC: Basic Statistics	All UG Courses

ALLIED I: ALGEBRA AND CALCULUS

SEMESTER - I

Note: Proof of the theorem and proof of examples are excluded.

Course	Objectives:					
The Course aims						
• To get knowledge about matrices and various method of solving algebraic						
	equations					
•	To learn basic concepts of differentiation and integration.					
Credits	:4	Fotal He	ours: 50			
UNIT	CONTENTS	Hrs.	CO			
Ι	Matrices: Matrix operations – Characteristics equation of a matrix – Eigen values and Eigen vectors – Cayley-Hamilton Theorem (Statement only) and its problems – Rank of a matrix – Problems.	10	CO 1			
II	Theory of Equation: Relation between roots and coefficients (Problems based on A.P., G.P. and H.P.) – Imaginary and Irrational roots.	10	CO 2			
III	Differentiation: Differential coefficient of a sum or difference – Product rule – Quotient rule – Function of function rule. Successive Differentiation: The nth derivative – Leibnitz formula for nth derivative – problems.	10	CO 3			
IV	Partial differentiation: Partial derivative - Partial derivatives of higher orders – Homogeneous functions (Euler theorem on homogeneous functions) – Problems.	10	CO 4			
V	Methods of integration: Integral of functions involving $\sqrt{a^2 + x^2}$ - Integration by parts – Bernoulli's formula.	10	CO 5			
Text Bo	Text Book					
1.	1. <i>Vittal, P.R.</i> 2002. Allied Mathematics. [Third Edition].Margham Publications, Chennai.					
Reference Books						
1.	1. <i>ManicavachagamPillay, T.K. and Narayanan, S.</i> 2004. Algebra – vol II. Vijay Nicole					
	Imprints Private Limited, Chennai.					
2.	Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, Chennai.					

After completion of the course, the students will be able to

CO 1	Calculate Eigen values and Rank of a matrix		
CO 2	Solve algebraic equations		
CO 3	Understand the variations in variables.		
CO 4	Understand the difference between partial and total differentiation		
CO 5	Evaluate simple integrations		

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	Н	М	М	
CO 2	М	М	Н	М	М	
CO 3	М	М	Н	М	М	
CO 4	М	М	Н	М	М	
CO 5	М	М	Н	М	М	
H-High; N	H-High; M-Medium; L-Low					

ALLIED I: ALGEBRA AND CALCULUS

SEMESTER – I

Note: Proof of the theorem and proof of examples are excluded.

Course	Objectives:				
The Course aims					
• To get knowledge about matrices and various method of solving algebraic					
	equations				
•	To learn basic concepts of differentiation and integration.				
Credits		otal Ho	ours: 50		
UNIT	CONTENTS	Hrs.	CO		
I	Matrices: Matrix operations – Characteristics equation of a matrix – Eigen values and Eigen vectors – Cayley-Hamilton Theorem (Statement only) and its problems – Rank of a matrix – Problems.	10	CO 1		
II	Theory of Equation: Relation between roots and coefficients (Problems based on A.P., G.P. and H.P.) – Imaginary and Irrational roots.	10	CO 2		
III	Differentiation: Differential coefficient of a sum or difference – Product rule – Quotient rule – Function of function rule. Successive Differentiation: The nth derivative – Leibnitz formula for nth derivative – problems.	10	CO 3		
IV	Partial differentiation: Partial derivative - Partial derivatives of higher orders – Homogeneous functions (Euler theorem on homogeneous functions) – Problems.	10	CO 4		
V	Methods of integration: Integral of functions involving $\sqrt{a^2 + x^2}$ - Integration by parts – Bernoulli's formula.	10	CO 5		
Text Bo					
1.	1. <i>Vittal, P.R.</i> 2002. Allied Mathematics. [Third Edition].Margham Publications, Chennai.				
Reference Books					
1.	ManicavachagamPillay, T.K. and Narayanan, S. 2004. Algebra – vol	I <mark>I.</mark> Vijay	^v Nicole		
	Imprints Private Limited, Chennai.				
2.	Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, C	hennai.			

After completion of the course, the students will be able to

CO 1	Calculate Eigen values and Rank of a matrix		
CO 2	Solve algebraic equations		
CO 3	Understand the variations in variables.		
CO 4	Understand the difference between partial and total differentiation		
CO 5	Evaluate simple integrations		

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	L	L	L	L
CO 2	Н	М	L	L	L
CO 3	Н	М	М	L	М
CO 4	Н	Н	L	М	М
CO 5	Н	Н	М	М	М
H-High; N	H-High; M-Medium; L-Low				

18UMACAA101

ALLIED I: MATHEMATICS FOR COMPUTER APPLICATIONS

SEMESTER - I

Note: Proof of the theorem and proof of examples are excluded.

Course	Objectives:					
The Course aims						
•	• To get knowledge about matrices and various method of solving algebraic					
	equations					
•	To learn basic concepts of logic and Probability.					
Credits	· · · · · ·	Fotal H	ours: 40			
UNIT	CONTENTS	Hrs.	CO			
	Matrices: Definition of a matrix – Importance – Notation – Order					
т	of a matrix – Types of matrices – Matrix operations-I – A System	00	CO 1			
Ι	of Linear Equations - Determinants - Cramer's Rule.	08	COT			
	(Part I: Chapter 4 Sections: 1-8)					
	Set Theory:Definition – Notations – Methods of description of					
II	sets – Types of sets – Venn diagram – Set operations – Laws and	08	CO 2			
11	Properties of sets – Number of elements – Cartesian product.	00	CO 2			
	(Part I: Chapter 3 Sections: 1-9)					
	Logic: Logic - Normal forms - Logical inferences - Predicate					
III	logic – Rules of Inferences.	08	CO 3			
	(Chapter 1 Sections: 1.6 – 1.10)					
	Combinatorics and Recurrence relations: Permutations -					
IV	Combinations – Partitions – Binomial Coefficients – Recurrence	08	CO 4			
- ·	relations.		001			
	(Chapter 3 Sections: 3.2 – 3.5, 3.7)					
	Probability:Mathematical probability – Relative frequency					
	approach – Axiomatic approach – Addition theorem (Method II)					
V	- Multiplication theorem (Method III) - Both addition and	08	CO 5			
	multiplication theorem (Method IV) – Baye's theorem (Method					
	VI).					
Text Books						
1.	Navnitham, P.A. 2011. Business Mathematics and Statistics. Jai Publishers,					
2	Trichy. (for Units I, II and V)	C' (1)	1 1			
2.	Somasundaram, R.M. 2009. Discrete Mathematical Structures.	Sixth E	dition].			
Deferre	PHI Learning Private Limited, New Delhi. (for Units III and IV)					
	nce Books	·				
1.	Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, C					
2.	Venkataraman, M.K. Sridharan, N. and Chandrasekaran, N., Z	2000. L	viscrete			
	Mathematics, The National Publish Company, New Delhi.					

CO 1	Calculate determinants and Inverse of a matrix	
CO 2	Gain Knowledge on Sets and operations on sets	
CO 3	Learn the concepts of logic and normal forms	
CO 4	Understand the concept of Combinatorics	
CO 5	Gain Knowledge on Probability theory	

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	L	М	М	
CO 2	L	М	Н	М	М	
CO 3	М	Н	М	М	М	
CO 4	Н	Н	М	М	М	
CO 5	Н	Н	L	М	М	
H-High; M-Medium; L-Low						

18UMAPHA101

ALLIED I: ALGEBRA AND DIFFERENTIAL CALCULUS

SEMESTER - I

Note: Proof of the theorem and proof of examples are excluded.

Course	Objectives:				
The Co	The Course aims				
•	To get knowledge about matrices and various method of solving algebraic equations				
•	To learn basic concepts of differentiation which is instrumental in constructing				
	many of mathematical concepts and also applied in all scient	ces and	l social		
	sciences.				
Credits	: 4Total Hours: 50				
UNIT	CONTENTS	Hrs.	CO		
Ι	Characteristics equation of a matrix – Eigen values and Eigen vectors – Cayley-Hamilton Theorem (Statement only) and its problems – Rank of a matrix – Problems.	10	CO 1		
Π	Polynomial Equations - Imaginary and Irrational roots - Relation between roots and coefficients – Transformation of equations – Descarte's rule of signs – Problems.	10	CO 2		
III	Successive Differentiation – nth derivative – Leibnitz formula for nth derivative – problems.	10	CO 3		
IV	Partial differentiation – Partial derivatives of higher orders – Homogeneous functions – Problems.	10	CO 4		
V	Radius of Curvature in Cartesian and polar coordinates – Pedal equation of a curve – Radius of curvature in p-r coordinates.	10	CO 5		
Text Book					
1.	1. <i>Vittal, P.R.</i> 2002. Allied Mathematics. [Third Edition]. Margham Publications,				
Chennai.					
	nce Books				
1.	<i>ManicavachagamPillay, T.K. and Narayanan, S.</i> 2004. Algebra – vol II. Vijay Nicole				
	Imprints Private Limited, Chennai.				
2.	Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, Chennai.				

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Calculate Eigen values and Rank of a matrix
CO 2	Solve algebraic equations
CO 3	Understand the variations in variables.
CO 4	Understand the difference between partial and total differentiation
CO 5	Find the curvature and radius of curvature of a curve

MAPPING

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	Н	М	Н	М	Н		
CO 2	Н	Н	М	М	L		
CO 3	L	L	Н	Н	М		
CO 4	Н	Н	М	L	Н		
CO 5	Н	М	Н	М	L		
H-High; M-Medium; L-Low							

18UMACHA101

ALLIED I: ALGEBRA AND DIFFERENTIAL CALCULUS

SEMESTER - I

Note: Proof of the theorem and proof of examples are excluded.

Course	Objectives:					
The Co	urse aims					
•	• To get knowledge about matrices and various method of solving algebraic equations					
•						
	many of mathematical concepts and also applied in all scient	ces and	l social			
	sciences.					
Credits	:4	fotal H	ours: 50			
UNIT	CONTENTS	Hrs.	CO			
	Characteristics equation of a matrix - Eigen values and Eigen					
Ι	vectors - Cayley-Hamilton Theorem (Statement only) and its	10	CO 1			
	problems – Rank of a matrix – Problems.					
	Polynomial Equations - Imaginary and Irrational roots - Relation					
II	between roots and coefficients - Transformation of equations -	10	CO 2			
	Descarte's rule of signs – Problems.					
III	Successive Differentiation – nth derivative – Leibnitz formula for	10	CO 3			
111	nth derivative – problems.	10	05			
IV	Partial differentiation - Partial derivatives of higher orders -	10	CO 4			
1 V	Homogeneous functions - Problems.	10	0.0.4			
V	Radius of Curvature in Cartesian and polar coordinates - Pedal	10	CO 5			
	equation of a curve – Radius of curvature in p-r coordinates.	10	05			
Text Bo						
1.	1. <i>Vittal, P.R.</i> 2002. Allied Mathematics. [Third Edition]. Margham Publications,					
	Chennai.					
Referen	nce Books					
1.	ManicavachagamPillay, T.K. and Narayanan, S. 2004. Algebra – vol II. Vijay Nicole					
	Imprints Private Limited, Chennai.					
2.	Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, Chennai.					

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Calculate Eigen values and Rank of a matrix
CO 2	Solve algebraic equations
CO 3	Understand the variations in variables.
CO 4	Understand the difference between partial and total differentiation
CO 5	Find the curvature and radius of curvature of a curve

MAPPING						
PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	Н	L	М	М	
CO 2	Н	М	Н	L	Н	
CO 3	L	Н	М	L	М	
CO 4	М	Н	L	М	М	
CO 5	М	L	М	Н	L	
H-High; M-Medium; L-Low						

18UMABAA101

ALLIED I: BUSINESS MATHEMATICS AND STATISTICS

SEMESTER – I

Course Objectives:

The Course aims

- To learn the basic concepts of mathematics and statistics which are instrumental in constructing mathematical models in Business
- To know the concepts of measures of central tendency and dispersions.

Credits	:4	Fotal He	ours: 50
UNIT	CONTENTS	Hrs.	CO
I	Set Theory: Definition – Notations – Methods of description of sets – Kind or Types of sets – Venn diagram – Set operations – Laws and properties of sets – Number of elements. (Part – I Chapter 3 Sections: 1 – 8)	10	CO 1
п	Matrices and Determinants: Definition of a matrix – Importance – Notation – Order of a matrix – Types of matrices – Matrix operations – I – A system of linear equations – Determinants – Matrix operations – II. (Part – I Chapter 4 Sections: 1 – 9)	10	CO 2
ш	Measure of Central Tendency: Arithmetic mean – Weighted arithmetic mean – Median – Mode – Geometric mean – Harmonic mean. (Part – II Chapter 7)	10	CO 3
IV	Measures of Dispersion: Range – Quartile deviation – Standard deviation – Coefficient of variation. (Part – II Chapter 8)	10	CO 4
v	 Simple Linear Correlation: Karl Pearson's coefficient of correlation – Spearman's rank correlation coefficient. Simple Linear Regression: Methods of forming the regression equations – Properties of regression lines and coefficients. (Part – II Chapter 12,13) 	10	CO 5
Text Bo	ok		
1.	<i>Navnitham, P.A.</i> 2011. Business Mathematics and Statistics. Trichy.	Jai Pub	lishers,
Referer	ice Books		
1.	<i>Gupta, S.P.</i> 2011. Statistical Methods. [Thirty Seventh Edition]. and Sons, New Delhi.	Sultan	Chand
2.	Pillai, R.S.N and Bagavathi, V. 2012. Statistics. [Seventh Edition] Company Ltd., New Delhi.	. S.Cha	nd and

CO 1	Learn the concepts of sets and set operations		
CO 2	Gain knowledge on matrices and their operations		
CO 3	Find averages and positional averages		
CO 4	Compare the consistency of the group of data		
CO 5	Measure the degree of relationship between variables		

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	Н	L	Н	Н	
CO 2	Н	Н	L	Н	Н	
CO 3	Н	Н	Н	L	Н	
CO 4	Н	Н	Н	Н	L	
CO 5	Н	Н	Н	Н	L	
H-High; M-Medium; L-Low						

Course Objectives:					
The Course aims					
•	To provide a basic knowledge in Numerical Solution for Algebraic and				
	Transcendental Equations.				
•	Introducing the methods for Interpolation.				
•	To solve integration using Numerical methods.				
Credits	:4	Fotal H o	ours: 50		
UNIT	CONTENTS	Hrs.	CO		
I	The solution of Numerical Algebraic and Transcendental Equations : Bisection Method –Iteration Method – Regula-Falsi Method – Newton-Raphson Method. (Chapter – 3 Sections: 3.1 – 3.4)	10	CO 1		
II	Solution of Simultaneous Linear Algebraic Equations: Introduction - Gauss Elimination Methods - Gauss Jordan method – Inversion of a matrix using Gauss Elimination method – Iterative method – Gauss-Jacobi - Gauss Seidal method of iteration. (Chapter – 4 Sections: 4.1 – 4.3, 4.7 - 4.9)	10	CO 2		
ш	Finite Differences : Forward Difference – Backward Diffference. Interpolation (for Equal Intervals): Newton forward interpolation formula and backward interpolation. (Chapter – 5 Sections: 5.1 – 5.2) (Chapter – 6 Sections: 6.1 – 6.6)	10	CO 3		
IV	Central Difference Interpolation Formulae (for Equal Intervals): Central Differences and Central Differences Table – Central Difference Interpolation formula – Gauss forward interpolation formula – Gauss backward interpolation formula – Stirling's formula. (Chapter – 7 Sections: 7.1 – 7.5)	10	CO 4		
V	 Numerical Integration: Trapezoidal rule – Simpson's one-third rule – Simpson's three-eighth rule. Numerical Solution of Ordinary Differential Equations: Euler's method – Improved Euler Method – Modified Euler method – Runge-Kutta method - Second order Runge-Kutta method (for first order ODE). (Chapter – 9 Sections: 9.9, 9.13, 9.14, Chapter – 11 Sections: 11.9 – 11.13) 	10	CO 5		

Text Bo	ook				
1.	Kandasamy, P., Thilagavathy, K., Gunavathi, K. 2008. Numerical Methods. [First				
	Edition]. S. Chand & Company Ltd, New Delhi.				
Referen	Reference Books				
1.	Dr. M.K. Venkataraman, 2007. Numerical Methods in Science and Engineering				
	<i>Dr. M.K. Venkataraman,</i> 2007. Numerical Methods in Science and Engineering [Fifth Edition]. The National Publishing Company, Chennai.				
2.	Dr. V.N. Vedamurthy, D.N. Ch. and S.N. Iyengar, 2011. Numerical Methods. Vikas				
	Publishing House Private Limited, New Delhi.				

After completion of the course, the students will be able to

CO 1	Find solution of algebraic and transcendental equations
CO 2	Solve system of linear equations
CO 3	Interpolate unknown values from known values
CO 4	Know numerical methods of solving differential equations
CO 5	Find the solution of the integral equations

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	Н	М	М	
CO 2	М	М	Н	М	М	
CO 3	М	М	Н	М	М	
CO 4	М	М	Н	М	М	
CO 5	М	М	Н	М	М	
H-High; M-Medium; L-Low						

18UMAECA201

Course Objectives:						
The Course aims						
To provide a basic knowledge in Numerical Solution for Algebraic and						
	Transcendental Equations.					
•						
•	To solve integration using Numerical methods.					
Credits	::4	Fotal Ho	ours: 50			
UNIT	CONTENTS	Hrs.	CO			
	The solution of Numerical Algebraic and Transcendental					
I	Equations : Bisection Method –Iteration Method – Regula-Falsi	10	CO 1			
-	Method – Newton-Raphson Method.	10	co 1			
	(Chapter – 3 Sections: 3.1 – 3.4)					
	Solution of Simultaneous Linear Algebraic Equations:					
	Introduction - Gauss Elimination Methods - Gauss Jordan					
II	method – Inversion of a matrix using Gauss Elimination method	10	CO 2			
	- Iterative method - Gauss-Jacobi - Gauss Seidal method of		00-			
	iteration.					
	(Chapter – 4 Sections: 4.1 – 4.3, 4.7 - 4.9)					
	Finite Differences : Forward Difference – Backward Difference.					
III	Interpolation (for Equal Intervals): Newton forward	10	CO 3			
	interpolation formula and backward interpolation.					
	(Chapter – 5 Sections: 5.1 – 5.2) (Chapter – 6 Sections: 6.1 – 6.6)					
	Central Difference Interpolation Formulae (for Equal					
	Intervals): Central Differences and Central Differences Table –					
IV	Central Difference Interpolation formula – Gauss forward	10	CO 4			
IV	interpolation formula – Gauss backward interpolation formula –	10	04			
	Stirling's formula.					
	(Chapter – 7 Sections: 7.1 – 7.5)					
	Numerical Integration: Trapezoidal rule – Simpson's one-third					
v	rule – Simpson's three-eighth rule.					
	Numerical Solution of Ordinary Differential Equations:					
	Euler's method – Improved Euler Method – Modified Euler					
	method – Runge-Kutta method - Second order Runge-Kutta	10	CO 5			
	method (for first order ODE).					
	(Chapter – 9 Sections: 9.9, 9.13, 9.14, Chapter – 11 Sections: 11.9					
	- 11.13)					

Text Bo	ook
1.	Kandasamy, P., Thilagavathy, K., Gunavathi, K. 2008. Numerical Methods. [First
	Edition]. S. Chand & Company Ltd, New Delhi.
Referen	nce Books
1.	Dr. M.K. Venkataraman, 2007. Numerical Methods in Science and Engineering
	[Fifth Edition]. The National Publishing Company, Chennai.
2.	Dr. V.N. Vedamurthy, D.N. Ch. and S.N. Iyengar, 2011. Numerical Methods. Vikas
	Publishing House Private Limited, New Delhi.

After completion of the course, the students will be able to

CO 1	Find solution of algebraic and transcendental equations
CO 2	Solve system of linear equations
CO 3	Interpolate unknown values from known values
CO 4	Know numerical methods of solving differential equations
CO 5	Find the solution of the integral equations

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	М	L	L	L
CO 2	Н	М	М	L	М
CO 3	Н	М	М	L	М
CO 4	Н	Н	М	М	Н
CO 5	Н	Н	М	М	Н
H-High; M-Medium; L-Low					

ALLIED II: SCIENTIFIC COMPUTING METHODS

SEMESTER - II

Course Objectives:							
The Course aims							
 To provide a basic knowledge in Numerical Solution for Algebraic and 							
Transcendental Equations.							
•							
•	To solve integration using Numerical methods.						
Credits	:4	Fotal H	ours: 40				
UNIT	CONTENTS	Hrs.	CO				
I	The solution of Numerical Algebraic and Transcendental Equations: Bisection Method –Iteration Method – Regula-Falsi Method – Newton-RaphsonMethod. (Chapter – 3 Sections: 3.1 – 3.4)	08	CO 1				
п	Solution of Simultaneous Linear Algebraic Equations: Introduction - Gauss Elimination Methods - Gauss Jordan method –Iterative method – Gauss-Jacobi - Gauss Seidal method of iteration. (Chapter – 4 Sections: 4.1 – 4.2, 4.7 - 4.9)	08	CO 2				
III	 Finite Differences: Forward Difference – Backward Difference. Interpolation (for Equal Intervals): Newton forward interpolation formula and backward interpolation. (Chapter – 5 Sections: 5.1 – 5.2) (Chapter – 6 Sections: 6.1 – 6.6) 	08	CO 3				
IV	Central Difference Interpolation Formulae (for Equal Intervals): Central Differences and Central Differences Table – Central Difference Interpolation formula – Gauss forward interpolation formula – Gauss backward interpolation formula – Stirling's formula. (Chapter – 7 Sections: 7.1 – 7.5)	08	CO 4				
V	 Numerical Integration: Trapezoidal rule – Simpson's one-third rule – Simpson's three-eighth rule. Numerical Solution of Ordinary Differential Equations: Euler's method – Improved Euler Method – Modified Euler method. (Chapter – 9 Sections: 9.9, 9.13, 9.14, Chapter – 11 Sections: 11.9 – 11.11) 	08	CO 5				
Text Book							
1.	<i>Kandasamy, P., Thilagavathy, K., Gunavathi, K.</i> 2008. Numerical M Edition]. S. Chand & Company Ltd, New Delhi.	Aethods	s. [First				

Referen	Reference Books			
1.	Dr. M.K. Venkataraman, 2007. Numerical Methods in Science and Engineering			
	[Fifth Edition]. The National Publishing Company, Chennai.			
2.	Dr. V.N. Vedamurthy, D.N. Ch. and S.N. Iyengar, 2011. Numerical Methods. Vikas			
	Publishing House Private Limited, New Delhi.			

After completion of the course, the students will be able to

CO 1	Find solution of algebraic and transcendental equations
CO 2	Solve system of linear equations
CO 3	Interpolate unknown values from known values
CO 4	Know numerical methods of solving differential equations
CO 5	Find the solution of the integral equations

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	М	Н	М	М
CO 2	L	М	Н	М	М
CO 3	М	Н	Н	М	М
CO 4	L	L	Н	М	М
CO 5	М	М	Н	М	Н
H-High; N	H-High; M-Medium; L-Low				

18UMAPHA201

ALLIED II: INTEGRAL CALCULUS AND VECTOR CALCULUS

SEMESTER – II

Course Objectives:

The Course aims

- To learn the concepts about integration.
- To introduce the concept of Fourier series.
- To study in detail about vector differentiation and vector integration.

Credits: 4Total Hours: 50 UNIT **CONTENTS** CO Hrs. Integral Calculus – Integration by parts - $\int_{1}^{\pi/2} \sin^n x dx$; $\int_{1}^{\pi/2} \cos^n x dx$; Ι 10 CO1 $\int \tan^n x dx$ - Definite integrals – Properties – Reduction formula – Problems. Fourier series: Definition - To find Fourier coefficients of Π Periodic functions with period 2π - Even and odd functions – 10 **CO 2** Half range series – Problems. Vector Differentiation: Definition of gradient of a scalar point function - Directional derivative of a vector point function -Unit normal vector. III 10 **CO 3** Vector point function: Divergent and curl of a vector point function - Definitions - Solenoidal and irrorational vector -Problems. Line integrals - Surface integrals and volume integrals -IV 10 **CO**4 Problems. Gauss Divergence theorem – Stoke's theorem – Green's theorem V 10 CO 5 (Statement only) - Problems. **Text Book** Vittal, P.R. 2002. Allied Mathematics. [Third Edition]. Margham Publications, 1. Chennai. **Reference Books** ManicavachagamPillay, T.K. and Narayanan, S. 2004. Algebra - vol II. Vijay Nicole 1. Imprints Private Limited, Chennai. 2. Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, Chennai.

After completion of the course, the students will be able to

CO 1	Integrate trigonometric functions and integrations involving more than onefactor			
CO 2	Expand a given function in terms of Fourier series			
CO 3	Identify conservative field and Solenoidal vector			
CO 4	Find work done by the force, area and volume of different regions			
CO 5	Discuss the relations between line integral, surface integral and volume integral			

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	Н	М	М	М	
CO 2	Н	Н	М	М	L	
CO 3	М	L	Н	Н	М	
CO 4	Н	Н	М	L	Н	
CO 5	Н	М	Н	М	L	
H-High; N	H-High; M-Medium; L-Low					

18UMACHA201

ALLIED II: INTEGRAL CALCULUS AND VECTOR CALCULUS

SEMESTER - II

Course Objectives:

The Course aims

- To learn the concepts about integration.
- To introduce the concept of Fourier series.
- To study in detail about vector differentiation and vector integration.

Credits	Credits: 4 Total Hours: 50					
UNIT	CONTENTS	Hrs.	CO			
I	Integral Calculus – Integration by parts - $\int_{0}^{\pi/2} \sin^{n} x dx$; $\int_{0}^{\pi/2} \cos^{n} x dx$; $\int_{0}^{\pi/2} \tan^{n} x dx$ - Definite integrals – Properties – Reduction formula – Problems.	10	CO 1			
п	Fourier series: Definition – To find Fourier coefficients of Periodic functions with period 2π - Even and odd functions – Half range series – Problems.	10	CO 2			
ш	 Vector Differentiation: Definition of gradient of a scalar point function – Directional derivative of a vector point function – Unit normal vector. Vector point function: Divergent and curl of a vector point function – Definitions – Solenoidal and irrorational vector – Problems. 	10	CO 3			
IV	Line integrals – Surface integrals and volume integrals - Problems.	10	CO 4			
v	Gauss Divergence theorem – Stoke's theorem – Green's theorem (Statement only) - Problems.	10	CO 5			
Text Bo	Text Book					
1.	<i>Vittal, P.R.</i> 2002. Allied Mathematics. [Third Edition]. Marghar Chennai.	n Publi	cations,			
Referen	Reference Books					
1.	<i>ManicavachagamPillay, T.K. and Narayanan, S.</i> 2004. Algebra – vol II. Vijay Nicole Imprints Private Limited, Chennai.					
2.	Singaravelu. A.2002. Allied Mathematics. Meenakshi Publishers, Chennai.					

After completion of the course, the students will be able to

CO 1	Integrate trigonometric functions and integrations involving more than onefactor			
CO 2	Expand a given function in terms of Fourier series			
CO 3	Identify conservative field and Solenoidal vector			
CO 4	Find work done by the force, area and volume of different regions			
CO 5	Discuss the relations between line integral, surface integral and volume integral			

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	Н	Н	Н	L	М	
CO 2	Н	L	М	Н	Н	
CO 3	L	Н	М	L	М	
CO 4	М	Н	L	М	М	
CO 5	М	L	М	Н	L	
H-High; N	H-High; M-Medium; L-Low					

18UMACSA301	ALLIED III: STATISTICAL METHODS	SEMESTER - III
-------------	------------------------------------	----------------

Course Objectives:

The Course aims

• Providing knowledge about statistical tools which enables them to develop their programming skills.

	[Fotal H	ours: 40	
UNIT	CONTENTS	Hrs.	CO	
I	 Measures of Central Tendency (Averages): Arithmetic Mean - Median - Mode. Measures of Dispersion: Range - Quartile deviation - Standard deviation - Coefficient of variation. (Chapter 9 and Chapter 10) 	08	CO 1	
п	 Correlation: Definition of Correlation – Karl Pearson's Coefficient of Correlation – Rank correlation coefficient. Regression: Correlation and Regression - Regression Equations (for ungrouped data). (Chapter 12 and Chapter 13) 	08	CO 2	
III	 Analysis of Time Series: Meaning – Definition – Uses of Time Series – Time series model - Components of Time Series. Measurement of Secular Trend: Graphic Method – Semi-average method - Moving average method – Method of Least Square. Measurement of Seasonal variations: Method of simple average – Ratio to Trend Method. (Chapter 15) 	08	CO 3	
IV	 Probability: Basic definitions – Problems – Addition theorem (statement only) Conditional probability – Multiplication Theorem (Statement only) – Baye's theorem (statement only) – Problems. (Chapter 18) 	08	CO 4	
v	Theoretical standard distributions: Binomial distribution – Poisson distribution – Normal distribution – Properties and Problems. (Chapter 19)	08	CO 5	
-	Text Book			
1.	Pillai, R.S.N and Bagavathi, V. 2012. Statistics. [Seventh Edition] Company Ltd., New Delhi.	. S.Cha	nd and	

Referen	Reference Books			
1.	Gupta, S.P. 2008. Statistical Methods. [Thirty Seventh Edition]. Sultan Chand			
	and Sons, New Delhi.			
2.	Mariappan, P. 2008. Statistics for Scientific Solutions (Business Statistics).			
	[First Edition]. New Century Book House Private Ltd., Chennai.			

Course Outcomes (CO)

After completion of the course, the students will be able to

CO 1	Find averages and positional averages
CO 2	Measure the degree of relationship between variables
CO 3	Measure the seasonal variations
CO 4	Gain knowledge on probability theory
CO 5	Know about discrete and continuous distributions

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	Н	М	М	
CO 2	М	М	Н	М	М	
CO 3	М	М	Н	М	М	
CO 4	М	М	Н	М	М	
CO 5	М	М	Н	М	М	
H-High; M-Medium; L-Low						

ALLIED: OPERATIONS RESEARCH

SEMESTER - III

Course Objectives:							
The Course aims							
• To know the concepts of mathematical formulation and solving.							
•	To find the solutions of Transportation and Assignment models.						
Credits	Cotal Ho						
UNIT	CONTENTS	Hrs.	CO				
Ι	 Linear Programming Formulation and Graphical Method: Introduction - Requirements for employing LPP technique – Mathematical Formulation of L.P.P Basic assumptions - Graphical method of the Solution of a L.P.P Some more cases – Advantage of Linear Programming – Limitations of Linear Programming. General Linear Programming Problem – Simplex method: General linear programming problem – Canonical and standard forms of LPP – The Simplex method –The Simplex Algorithm. (Chapter – 2 Sections: 2.1 – 2.8) (Chapter – 3 Sections: 3.1.1 – 3.1.4) 	10	CO 1				
п	 Transportation Model: Introduction - Mathematical formulation of a transportation problem - Methods for finding initial basic feasible solution - Transportation algorithm or MODI method - Degeneracy in Transportation problems - Unbalanced Transportation Problems - Maximization case in Transportation problems. (Chapter - 7 Sections: 7.1 - 7.5) 	10	CO 2				
III	Assignment Problem: Introduction – Mathematical formulation of an Assignment Problem –Difference between the Transportation Problem and Assignment Problem – Assignment Algorithm or Hungarian Method – Unbalanced Assignment Models – Maximization case in Assignment Problems. (Chapter – 8 Sections: 8.1 – 8.2, 8.4 – 8.7)	10	CO 3				
IV	Scheduling byPERT and CPM: Introduction - BasicTerminologies - Rules for constructing a project network -Network computations - Floats - Programme EvaluationReview Technique (PERT) - Basic differences between PERT andCPM.(Chapter - 15 Sections: 15.1 - 15.7)	10	CO 4				

v	Game Theory: Introduction – Two person zero-sum games – The Maximin-Minimax Principle – Games without Saddle points, Mixed strategies – Dominance property – Graphical method for 2 x n or m x 2 games. (Chapter - 16 Sections: 16.1 – 16.4, 16.6 – 16.7)	10	CO 5	
Text Bo	ook			
1.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2	014. R	esource	
	Management Techniques. [Eighth Edition]. AR Publication, Chen	nai.		
Referer	Reference Books			
1.	KantiSwarup, Gupta, P.K. and Man Mohan. 2014. Operation	ons Re	search.	
	[Seventeenth Edition]. Sultan Chand & Sons, New Delhi.			
2.	Gupta, P.K. and Hira. D.S. 2004. Operations Research. [Eighth Edit	ition]. S	.Chand	
	and Company, New Delhi.			

After completion of the course, the students will be able to

CO 1	Formulate and solve real life problems through LPP
CO 2	Calculate the optimum transportation schedule
CO 3	Find the optimum assignment model
CO 4	Use the techniques for planning and scheduling of projects
CO 5	Identify the optimum strategies in business

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	Н
CO 2	Н	Н	Н	L	Н
CO 3	Н	Н	Н	Н	L
CO 4	Н	Н	Н	L	Н
CO 5	Н	L	Н	Н	Н
H-High; M-Medium; L-Low					

18UMACOA301

ALLIED III: BUSINESS MATHEMATICS AND OPERATIONS RESEARCH

SEMESTER - III

Course Objectives:

The Course aims

- To provide skill of converting business problems into mathematical problems.
- To impart knowledge on mathematical tools to solve problems.

Credits	• 4	Fotal Ho	011rs· 40
UNIT	CONTENTS	Hrs.	CO
I	 Series: Sequence and Series – Arithmetic Progression – Geometric Progression. Mathematics of Finance: Basic concepts – Symbols used – Simple interest – Formulae and Problems – Compound interest – Formulae and problems. (Chapter 1 Sections: 1 - 3) (Chapter 2 Sections: 1 - 5) 	08	CO 1
п	Matrices and Determinants: Definition of a matrix – Order of a Matrix - Types of matrices – Matrix operations I: Addition – Subtraction – Scalar multiplication - Multiplication – Transpose – A system of linear equations – Determinants –Cramer's Rule. (Chapter 4 Sections: 1 - 8)	08	CO 2
III	 Linear Programming Formulation and Graphical Method: Introduction - Requirements for employing LPP technique - Mathematical Formulation of L.P.P Basic assumptions - Graphical method of the Solution of a L.P.P Some more cases - Advantage of Linear Programming - Limitations of Linear Programming. (Chapter - 2 Sections: 2.1 - 2.8) 	08	CO 3
IV	Transportation Model: Introduction - Mathematical formulation of a transportation problem - Methods for finding initial basic feasible solution – Transportation algorithm or MODI method – Degeneracy in Transportation problems – Unbalanced Transportation Problems – Maximization case in Transportation problems. (Chapter – 7 Sections: 7.1 – 7.5)	08	CO 4
v	Assignment Problem: Introduction – Mathematical formulation of an Assignment Problem –Difference between the Transportation Problem and Assignment Problem – Assignment Algorithm or Hungarian Method – Unbalanced Assignment Models – Maximization case in Assignment Problems. (Chapter – 8 Sections: 8.1 – 8.2, 8.4 - 8.7)	08	CO 5

Text Bo	ooks
1.	Navnitham, P.A. 2011. Business Mathematics and Statistics. Jai Publishers,
	Trichy. (For Units I - II)
2.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2014. Resource
	Management Techniques. [Eighth Edition]. AR Publication, Chennai.
	(For Units III - V)
Referen	nce Books
1.	Vittal, P.R., 2008. Business Mathematics and Statistics. [Fifth Edition]. Margham
	Publications, Chennai.
2.	KantiSwarup, Gupta, P.K.and Man Mohan. 2014. Operations Research. Sultan
	Chand & Sons, New Delhi.

After completion of the course, the students will be able to

CO 1	Solve problems involved in business environment
CO 2	Gain knowledge on matrices and their operations
CO 3	Formulate and solve real life problems through LPP
CO 4	Find the optimum transportation schedule
CO 5	Calculate the optimum assignment model

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	М	Н	М	М
CO 2	L	М	Н	М	М
CO 3	L	Н	М	М	М
CO 4	L	М	Н	L	М
CO 5	L	М	Н	L	L
H-High; M-Medium; L-Low					

18UMACCA301

ALLIED III: BUSINESS MATHEMATICS AND OPERATIONS RESEARCH

SEMESTER - III

Course Objectives:

The Course aims

- To provide skill of converting business problems into mathematical problems.
- To impart knowledge on mathematical tools to solve problems.

Credits	• A	Fotal Ho	011rs· 40
UNIT	CONTENTS	Hrs.	CO
I	 Series: Sequence and Series – Arithmetic Progression – Geometric Progression. Mathematics of Finance: Basic concepts – Symbols used – Simple interest – Formulae and Problems – Compound interest – Formulae and problems. (Chapter 1 Sections: 1 - 3) (Chapter 2 Sections: 1 - 5) 	08	CO 1
п	Matrices and Determinants: Definition of a matrix – Order of a Matrix - Types of matrices – Matrix operations I: Addition – Subtraction – Scalar multiplication - Multiplication – Transpose – A system of linear equations – Determinants –Cramer's Rule. (Chapter 4 Sections: 1 - 8)	08	CO 2
III	 Linear Programming Formulation and Graphical Method: Introduction - Requirements for employing LPP technique - Mathematical Formulation of L.P.P Basic assumptions - Graphical method of the Solution of a L.P.P Some more cases - Advantage of Linear Programming - Limitations of Linear Programming. (Chapter - 2 Sections: 2.1 - 2.8) 	08	CO 3
IV	Transportation Model: Introduction - Mathematical formulation of a transportation problem - Methods for finding initial basic feasible solution – Transportation algorithm or MODI method – Degeneracy in Transportation problems – Unbalanced Transportation Problems – Maximization case in Transportation problems. (Chapter – 7 Sections: 7.1 – 7.5)	08	CO 4
V	Assignment Problem: Introduction – Mathematical formulation of an Assignment Problem –Difference between the Transportation Problem and Assignment Problem – Assignment Algorithm or Hungarian Method – Unbalanced Assignment Models – Maximization case in Assignment Problems. (Chapter – 8 Sections: 8.1 – 8.2, 8.4 - 8.7)	08	CO 5

Text Bo	ooks
1.	Navnitham, P.A. 2011. Business Mathematics and Statistics. Jai Publishers,
	Trichy. (For Units I - II)
2.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2014. Resource
	Management Techniques. [Eighth Edition]. AR Publication, Chennai.
	(For Units III - V)
Referen	nce Books
1.	Vittal, P.R., 2008. Business Mathematics and Statistics. [Fifth Edition]. Margham
	Publications, Chennai.
2.	KantiSwarup, Gupta, P.K.and Man Mohan. 2014. Operations Research. Sultan
	Chand & Sons, New Delhi.

After completion of the course, the students will be able to

CO 1	Solve problems involved in business environment
CO 2	Gain knowledge on matrices and their operations
CO 3	Formulate and solve real life problems through LPP
CO 4	Find the optimum transportation schedule
CO 5	Calculate the optimum assignment model

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	L	Н	Н	L	Н	
CO 2	L	М	Н	L	Н	
CO 3	L	L	Н	М	М	
CO 4	М	L	Н	L	Н	
CO 5	L	L	Н	L	Н	
H-High; M-Medium; L-Low						

18UMANM301		NMEC: QUANTITATIVE APTITUDE	SEMESTER - III		- III
	Objective:				
The Co	urse aims				
•		prove the problem solving skills			
Credits	s: 2		- -	Fotal Ho	ours: 25
UNIT		CONTENTS		Hrs.	CO
I	Problems on Tin	ne and Work		05	CO 1
	Chapter: 15				
II	Problems on Tra	ins		05	CO 2
	Chapter: 18				
III	Simplification – Logarithm based problems			05	CO 3
		Chapters: 4 and 23			
IV	Problems on Are	eas		05	CO 4
	Chapter: 24			00	
v	Problems on Vol	umes, Surface Areas		05	CO 5
v	Chapter: 25			05	05
Text Book					
1.	Aggarwal, R.S. 2	008. Quantitative Aptitude. S.Chand and	Comp	any Lto	l., New
	Delhi.				

Course Outcomes (CO)

After completion of the course, the students will be able to

CO 1	Solve problems involved in Time and Work
CO 2	Gain knowledge on Problems on Trains
CO 3	Simplify the given problem and find solution for the Logarithms
CO 4	Find the area value for the different regions
CO 5	Calculate volumes and Surface areas

18UMACSA401

ALLIED IV: OPERATIONS RESEARCH

SEMESTER - IV

Course	Objective:		
The Co	urse aims		
•	To describe the industrial problems in terms of mathematical mod	leling ar	id find
	the solution to the problem.	U	
Credite	: 4	Fotal Hours: 40	
UNIT	CONTENTS	Hrs.	CO
I	Linear Programming Formulation and Graphical Method: Introduction - Requirements for employing LPP technique – Mathematical Formulation of L.P.P Basic assumptions - Graphical method of the Solution of a L.P.P. – Some more cases – Advantage of Linear Programming – Limitations of Linear Programming.	08	CO 1
II	 Transportation Model: Introduction - Mathematical formulation of a transportation problem - Methods for finding initial basic feasible solution - Transportation algorithm or MODI method - Degeneracy in Transportation problems - Unbalanced Transportation Problems - Maximization case in Transportation problems. (Chapter - 7 Sections: 7.1 - 7.5) 	08	CO 2
III	Assignment Problem: Introduction – Mathematical formulation of an Assignment Problem –Difference between the Transportation Problem and Assignment Problem – Assignment Algorithm or Hungarian Method – Unbalanced Assignment Models – Maximization case in Assignment Problems. (Chapter – 8 Sections: 8.1 – 8.2, 8.4 - 8.7)	08	CO 3
IV	 Scheduling by PERT and CPM: Introduction – Basic Terminologies – Rules for constructing a project network – Network computations – Floats – Programme Evaluation Review Technique (PERT) – Basic differences between PERT and CPM. (Chapter – 15 Sections: 15.1 – 15.7) 	08	CO 4
v	Game Theory: Introduction – Two person zero-sum games – The Maximin-Minimax Principle – Games without Saddle points, Mixed strategies – Dominance property - Graphical method for 2 x n or m x 2 games. (Chapter - 16 Sections: 16.1 – 16.4, 16.6 – 16.7)	08	CO 5

Text Bo	ook
1.	Sundaresan, V., Ganapathy Subramanian, K.S. and Ganesan, K. 2014. Resource
	Management Techniques. [Eighth Edition]. AR Publication, Chennai.
Referer	nce Books
1.	KantiSwarup, Gupta, P.K. and Man Mohan. 2014. Operations Research.
	[Seventeenth Edition]. Sultan Chand & Sons, New Delhi.
2.	Gupta, P.K. and Hira. D.S. 2004. Operations Research. [Eighth Edition]. S.Chand
	and Company, New Delhi.

After completion of the course, the students will be able to

CO 1	Formulate and solve real life problems through LPP
CO 2	Calculate the optimum transportation schedule
CO 3	Find the optimum assignment model
CO 4	Use the techniques for planning and scheduling of projects
CO 5	Identify the optimum strategies in business

CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	М	Н	М	М
CO 2	М	М	Н	М	М
CO 3	М	М	Н	М	М
CO 4	М	М	Н	М	М
CO 5	М	М	Н	М	М
H-High; N	H-High; M-Medium; L-Low				

18UMACOA401	
-------------	--

SEMESTER – IV

Course Objectives:

The Course aims

- To provide knowledge on statistical techniques used for decision making in business.
- To impart knowledge on statistical tools to solve problems.

Credits	Credits: 4 Total Hours: 40				
UNIT	CONTENTS	Hrs.	CO		
I	Measures of Central Tendency (Averages): Arithmetic Mean – Median – Mode - Geometric Mean - Harmonic Mean (Simple problems). (Chapter 9)	08	CO 1		
II	Measures of Dispersion: Range - Quartile deviation - Standard deviation - Coefficient of Variation. (Chapter 10)	08	CO 2		
III	Correlation: Definition – Types of Correlation – Method of studying Correlation: Karl Pearson's Coefficient of correlation – Properties of coefficient Correlation – Rank Correlation Coefficient. (Chapter 12)	08	CO 3		
IV	Index Numbers: Introduction – Meaning – Definition – Characteristics of Index Numbers – Uses – Types of Index Numbers – Unweighted– Quantity Index Numbers – Consumer Price Index – Limitations of Index Numbers. (Chapter 14)	08	CO 4		
V	 Analysis of Time Series: Meaning – Definition – Uses of Time Series – Time series model - Components of Time Series. Measurement of Secular Trend: Graphic Method – Semi-average method - Moving average method – Method of Least Square. Measurement of Seasonal variations: Method of simple average – Ratio to Trend Method. (Chapter 15) 	08	CO 5		
Text Book					
1.	<i>Pillai, R.S.N. and Bagavathi, V.</i> 2012. Statistics. [Seventh Edition]. S.Chand and Company Ltd., New Delhi.				
Reference Books					
1.	<i>Vittal, P.R.,</i> . 2008. Business Mathematics and Statistics. [Fifth Edition]. Margham Publications, Chennai.				
2.	<i>Navnitham, P.A.</i> 2011. Business Mathematics and Statistics. Trichy.	Jai Pub	olishers,		

CO 1	Learn about measures of central tendency
CO 2	Understand the concepts of measures of dispersion
CO 3	Gain knowledge on correlation and regression analysis
CO 4	Calculate variations in prices of different commodities
CO 5	Measure the seasonal variations

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	L	Н	Н	М
CO 2	L	М	Н	М	М
CO 3	L	М	Н	Н	М
CO 4	L	Н	Н	Н	М
CO 5	L	М	Н	М	М
H-High; M-Medium; L-Low					

18UMACCA401

SEMESTER - IV

Course Objectives:

The Course aims

- To provide knowledge on statistical techniques used for decision making in business.
- To impart knowledge on statistical tools to solve problems.

Credits	Credits: 4 Total Hours:					
UNIT	CONTENTS	Hrs.	CO			
Ι	Measures of Central Tendency (Averages): Arithmetic Mean – Median – Mode - Geometric Mean - Harmonic Mean (Simple problems). (Chapter 9)	08	CO 1			
II	Measures of Dispersion: Range - Quartile deviation - Standard deviation - Coefficient of Variation. (Chapter 10)	08	CO 2			
III	Correlation: Definition – Types of Correlation – Method of studying Correlation: Karl Pearson's Coefficient of correlation – Properties of coefficient Correlation – Rank Correlation Coefficient. (Chapter 12)	08	CO 3			
IV	Index Numbers: Introduction – Meaning – Definition – Characteristics of Index Numbers – Uses – Types of Index Numbers – Unweighted– Quantity Index Numbers – Consumer Price Index – Limitations of Index Numbers. (Chapter 14)	08	CO 4			
V	 Analysis of Time Series: Meaning – Definition – Uses of Time Series – Time series model - Components of Time Series. Measurement of Secular Trend: Graphic Method – Semi-average method - Moving average method – Method of Least Square. Measurement of Seasonal variations: Method of simple average – Ratio to Trend Method. (Chapter 15) 	08	CO 5			
Text Bo	Text Book					
1.	1. <i>Pillai, R.S.N. and Bagavathi, V.</i> 2012. Statistics. [Seventh Edition]. S.Chand and Company Ltd., New Delhi.					
Reference Books						
1.	1. <i>Vittal, P.R.,</i> . 2008. Business Mathematics and Statistics. [Fifth Edition]. Margham Publications, Chennai.					
2.	<i>Navnitham, P.A.</i> 2011. Business Mathematics and Statistics. Trichy.	Jai Pub	olishers,			

CO 1	Learn about measures of central tendency
CO 2	Understand the concepts of measures of dispersion
CO 3	Gain knowledge on correlation and regression analysis
CO 4	Calculate variations in prices of different commodities
CO 5	Measure the seasonal variations

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	Н	L	Н
CO 2	М	М	Н	L	L
CO 3	М	L	Н	L	L
CO 4	М	L	Н	М	М
CO 5	L	L	Н	L	L
H-High; M-Medium; L-Low					

18UMABCA401

ſ

SEMESTER - IV

Course Objective:						
The Course aims						
• [To learn the strategies of research field and also to provide	knowle	edge to			
1	inderstand the role of statistics in research.		0			
Credite	:2	Fotal H	ours: 40			
UNIT	CONTENTS	Hrs.	CO			
	Introduction: Definition – Function of Statistics – Limitations of					
I	Statistics - Collection of data - Classification and Tabulation.	08	CO 1			
	(Chapter 1 Sections: 1.3, 1.7, 1.8) (Chapter 2 Sections: 2.1, 2.3)					
	Measures of Central Tendency: Arithmetic Mean - Median -					
II	Mode – Geometric mean – Harmonic mean.	08	CO 2			
	(Chapter 3 Sections: 3.1.1, 3.2 - 3.5)					
	Measures of Dispersion and Variability: Range - Inter Quartile					
III	Range and Quartile Deviation - Mean Deviation - Standard	08	CO 3			
	deviation – Coefficient of variation.					
	(Chapter 4 Sections: 4.1 – 4.4)					
	Correlation Analysis: Types of correlation – Methods of					
137	studying Correlation (Excluding Correlation of grouped data).	00	<u> </u>			
IV	Regression Analysis: Regression line – Regression equations	08	CO 4			
	(Excluding Method of Least Square).					
	(Chapter 6 Sections: 6.1 – 6.2) (Chapter 7 Sections: 7.1 – 7.2)					
	Sampling and Test of Significance: Steps in test of hypothesis – Test of significance of small samples (t and F) – Chi-square test					
V	(Problems only).	08	CO 5			
	(Chapter 10 Sections:10.1, 10.5) (Chapter 11)					
Text Bo	Text Book					
1.						
	[Third Edition]. Palani Paramount Publications, Palani.					
Reference Books						
1.						
2.	Arora, P.N. and Malhan, P.K. 2006. Biostatistics. Himalaya Pub	lishing	House.			
	Mumbai.					
L						

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics
CO 2	Understand the concepts of measures of central tendency
CO 3	Know the concepts of measures of dispersion
CO 4	Gain knowledge on correlation and regression analyses
CO 5	Test the samples using testing of hypothesis

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	Н	L	Н	Н
CO 2	L	Н	L	Н	Н
CO 3	L	Н	L	Н	Н
CO 4	L	Н	L	Н	Н
CO 5	L	Н	L	Н	Н
H-High; M-Medium; L-Low					

ALLIED: B	IOSTATISTIC	S
-----------	-------------	---

SEMESTER - IV

Course	Objective:				
The Co	urse aims				
•]	To learn the strategies of research field and also to provide	knowle	edge to		
	understand the role of statistics in research.		U		
Credits	: 2	Fotal H	ours: 40		
UNIT	CONTENTS	Hrs.	CO		
	Introduction: Definition – Function of Statistics – Limitations of				
Ι	Statistics – Collection of data – Classification and Tabulation.	08	CO 1		
	(Chapter 1 Sections: 1.3, 1.7, 1.8) (Chapter 2 Sections: 2.1, 2.3)				
	Measures of Central Tendency: Arithmetic Mean – Median –				
II	Mode – Geometric mean – Harmonic mean.	08	CO 2		
	(Chapter 3 Sections: 3.1.1, 3.2 - 3.5)				
	Measures of Dispersion and Variability: Range – Inter Quartile				
III	Range and Quartile Deviation - Mean Deviation - Standard	08	CO 3		
	deviation – Coefficient of variation.	00	000		
	(Chapter 4 Sections: 4.1 – 4.4)				
	Correlation Analysis: Types of correlation – Methods of				
	studying Correlation (Excluding Correlation of grouped data).				
IV	Regression Analysis: Regression line – Regression equations	08	CO 4		
	(Excluding Method of Least Square).				
	(Chapter 6 Sections: 6.1 – 6.2) (Chapter 7 Sections: 7.1 – 7.2)				
	Sampling and Test of Significance: Steps in test of hypothesis –				
V	Test of significance of small samples (t and F) – Chi-square test	08	CO 5		
	(Problems only).				
T (D	(Chapter 10 Sections:10.1, 10.5) (Chapter 11)				
	Text Book				
1.	Palanichamy. S and Manoharan. M, 2001. Statistical methods for Biologists.				
[Third Edition]. Palani Paramount Publications, Palani.					
	nce Books				
1.	Daniel W.W. 1987. Biostatistics. John Wiley and Sons, Newyork.	1. 1 .	T T		
2.	Arora, P.N. and Malhan, P.K. 2006. Biostatistics. Himalaya Publishing House,				
	Mumbai.				

CO 1	Learn the importance of statistics
CO 2	Understand the concepts of measures of central tendency
CO 3	Know the concepts of measures of dispersion
CO 4	Gain knowledge on correlation and regression analyses
CO 5	Test the samples using testing of hypothesis

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	Н	М	М
CO 2	М	М	М	М	М
CO 3	М	L	М	L	L
CO 4	М	М	М	М	М
CO 5	М	М	М	Н	М
H-High; N	H-High; M-Medium; L-Low				

SEMESTER - IV

Course	Objective:			
The Co	urse aims			
•]	To learn the strategies of research field and also to provide	knowle	edge to	
	inderstand the role of statistics in research.		0	
Credits	: 2	Fotal H	ours: 40	
UNIT	CONTENTS	Hrs.	CO	
	Introduction: Definition – Function of Statistics – Limitations of			
Ι	Statistics - Collection of data - Classification and Tabulation.	08	CO 1	
	(Chapter 1 Sections: 1.3, 1.7, 1.8) (Chapter 2 Sections: 2.1, 2.3)			
	Measures of Central Tendency: Arithmetic Mean – Median –			
II	Mode – Geometric mean – Harmonic mean.	08	CO 2	
	(Chapter 3 Sections: 3.1.1, 3.2 - 3.5)			
	Measures of Dispersion and Variability: Range – Inter Quartile			
III	Range and Quartile Deviation - Mean Deviation - Standard	08	CO 3	
	deviation – Coefficient of variation.	00	000	
	(Chapter 4 Sections: 4.1 – 4.4)			
	Correlation Analysis: Types of correlation – Methods of			
	studying Correlation (Excluding Correlation of grouped data).			
IV	Regression Analysis: Regression line - Regression equations	08	CO 4	
	(Excluding Method of Least Square).			
	(Chapter 6 Sections: 6.1 – 6.2) (Chapter 7 Sections: 7.1 – 7.2)			
	Sampling and Test of Significance: Steps in test of hypothesis –			
\mathbf{V}	Test of significance of small samples (t and F) – Chi-square test	08	CO 5	
	(Problems only).			
T (D	(Chapter 10 Sections:10.1, 10.5) (Chapter 11)			
	Text Book			
1.	Palanichamy. S and Manoharan. M, 2001. Statistical methods for Biologists.			
D - ([Third Edition]. Palani Paramount Publications, Palani.			
	nce Books			
1.	Daniel W.W. 1987. Biostatistics. John Wiley and Sons, Newyork.	1.1.	тт	
2.	Arora, P.N. and Malhan, P.K. 2006. Biostatistics. Himalaya Publishing House,			
	Mumbai.			

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics
CO 2	Understand the concepts of measures of central tendency
CO 3	Know the concepts of measures of dispersion
CO 4	Gain knowledge on correlation and regression analyses
CO 5	Test the samples using testing of hypothesis

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	М	L	Н	Н
CO 2	М	М	L	Н	Н
CO 3	М	М	L	Н	Н
CO 4	М	М	L	Н	Н
CO 5	М	М	L	Н	Н
H-High; N	/I-Medium; L-	Low			

18UMABCAP401/ 18UMAMBAP401/ 18UMABTAP401

ALLIED PRACTICAL: STATISTICS (USING MS-EXCEL)

SEMESTER - IV

Course Objective:

The Course aims

• To give a good grip on concepts in analyzing the data using statistical software

Credits: 2]	Fotal Ho	ours: 21
PROGRAM	CONTENTS	Hrs.	CO
1	Diagrams and graphs	03	CO 1
2	Measures of Locations	03	CO 2
3	Measures of Dispersion	03	CO 2
4	Correlation coefficient (Karl Pearson and Rank method)	03	CO 3
5	Regression lines 03 CO		CO 3
6	Small sample test (t and F) 03 CC		CO 4
7	Chi-square test for independence of attributes.	03	CO 4
Reference Boo	oks		
1.	BhattacharjeeDibyojyoti.Practical Statistics Using Mi	crosoft	Excel.
	Asian Books Private Ltd.		
2.	Apte D.P.2008. Statistical Tools for Mangers using MS	6 EXCE	L. Excel
	Books		

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Demonstrate the data in diagrammatic and graphical representation
CO 2	Find the averages and measures of dispersion
CO 3	Calculate correlation and regression for huge amount of data
CO 4	Gain knowledge about test of significance

18UMANM401		NMEC: BASIC STATISTICS SEM		IESTER – IV	
Course	Objective:				
The Co	urse aims				
•	To create and im	prove the problem solving skills			
Credits	: 2		Г	Total Ho	ours: 25
UNIT		CONTENTS		Hrs.	CO
Ι	Statistics – Definition – Classification and Tabulation – Formation of Frequency Distribution				CO 1
II	Measures of Central Tendency: Arithmetic Mean, Median and Mode.				CO 2
III	Measures of Dispersion: Range, Standard Deviation and Coefficient of Variation.			05	CO 3
IV	Correlation – Definition – Properties – Karl Pearson Coefficient of Correlation – Spearman's Rank Correlation			05	CO 4
v	Regression Lines- Properties of Regression Coefficients – Difference between Correlation and Regression			05	CO 5
Text Bo	ook				
1.	<i>Agarwal, R.S.</i> 20 Delhi.	08. Quantitative Aptitude. S.Chand and	Comp	any Ltc	l., New

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics
CO 2	Understand the concepts of measures of central tendency
CO 3	Know the concepts of measures of dispersion
CO 4	Gain knowledge on correlation
CO 5	Discuss the regression analysis

INTER DISCIPLINARY COURSE OFFERED BY THE DEPARTMENT

(FOR STUDENTS ADMITTED FROM 2019-2020 ONWARDS)

Second Semester						
S. No.	Subject Code	Subject	Offered for the students of			
1	19PMACOI201	Advanced Business Statistics	M.Com.			
Third Semester						
2	19PMACOI301	Resource Management Techniques	M.Com.			

19PMACOI201		IDCI: ADVANCED BUSINESS STATISTICS SI	EMESTE	MESTER – II		
Course	Objectives	:				
The Co	urse aims					
•	To create	knowledge of analyzing the data based on sample i	nformat	ion and		
	making in	terpretation about the population.				
Credits	:4		Total H	ours: 50		
UNIT		CONTENTS	Hrs.	CO		
I	Computat	ionofBasicStatistics-MeasuresofCentralTendency-	10	60.4		
1	Dispersion	nandRelations-ExcelworkandSPSS	10	CO 1		
	Probabilit	ytheoremsdistributions-				
II	Binomial,	Poissonandnormaldistributions-	10	CO 2		
	Character	isticsandApplications.				
	Testingof	Hypothesis-StandardErrorandSamplingDistribution	-			
III	Errorsin Testing Hypothesis – Large Samples Test-Tests of			CO 3		
	Significance - Z test-Small SamplesTest-'t'test.					
	Testingof	Hypothesis-ParametricTests-F-Test-One-way-Two-				
IV	way-Chi-Square Test andGoodnessoffit-YatesCorrection-			CO 4		
	UsesofChi-squareTest.					
	MultivariateAnalysis-					
V	Partialand	MultipleCorrelationandRegression-Factor Analysis.	10	CO 5		
Text Bo	ok			I		
1.	Gupta, S.P	. Statistical Methods.Sultan Chand and Sons, New Del	hi.			
	ice Books					
1.	<i>Panneerselvam, R.</i> 2010, Research Methodology . PHILearning Private Limited, New Delhi.					
2.	Sancheti, D.C and Kapoor V.K. 2005. Statistics. [Seventh Edition]. Sultan Chand and					
	Sons, New Delhi.					
3.	<i>Kapoor, V.K and Gupta, S.C.</i> Fundamentals of Mathematical Statistics. [Eleventh Edition]. Sultan Chand and Sons, New Delhi.					
4.	Kapoor, V.K and Gupta, S.P. Elements of Mathematical Statistics.Sultan Chand					
		New Delhi.				

After completion of the course, the students will be able to

CO 1	Learn the importance of statistics and understand the concepts of measures of
COT	central tendency
CO 2	Understand the concepts of theoretical distributions.
CO 3	Know about the concepts of sampling theory
CO 4	Test the research statements through ANOVA.
CO 5	Gain knowledge on multivariate analysis

Marino								
CO PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5			
CO 1	М	М	Н	L	L			
CO 2	Н	М	L	М	L			
CO 3	Н	Н	М	L	М			
CO 4	L	Н	М	Н	Н			
CO 5	М	М	L	М	М			
H-High; N	H-High; M-Medium; L-Low							

19PMA	COI301 IDC II: RESOURCE MANAGEMENT TECHNIQUES S	EMES	TER -	III	
	Objectives:				
i ne cou	rrse aims To know the concepts of mathematical formulation and solv To find solution of Transportation and Assignment models. To learn the concepts in CPM and PERT.	0			
Credits:		Te	otal Ho	1	
UNIT	CONTENTS		Hrs	CO	
Ι	Resource Management Techniques – Introduction Natu Application of RMT in decision Making – Modelin Classification of Models – Principles of Modeling.		10	CO1	
п	Linear Programming Problem – Assumptions – Formulation Linear Programming – Problems and Solutions – Gra Method – Simplex Method – Big M Method (Not exceeding variables)	aphic	10	CO2	
III	Transportation Problem – IBFS North West Corner Rule – Cost Method – Vogel's Approximation Method – Optin Solution – Modi Method – Assignment Problem – Minimis – Balanced – Unbalanced.	10	CO3		
IV	Decision Theory – Decision Theory under Uncertain Maximin Criterion – Minimax Criterion – Minimax R Criterion – Decision Theory Under Risk – Expected Mon Value – Expected Opportunity Loss – Expected Value U Perfect Information – Decision Tree.	10	CO4		
v	Network Analysis – Basic Concepts – Construction of Network Critical path Method (CPM) – Program Evaluation Re Technique (PERT) - Demand Forecasting – Time series – Se Trend – Method of Moving Average – Method of Least Squ – Seasonal Indices – Method of Simple Average Method of Relatives.	eview cular uares	10	CO5	
Text Bo	ok			1	
1 Kar	ntiSwarup, Gupta, P.K.and Man Mohan. 2014. Operations and & Sons, New Delhi.	Rese	arch.	Sultan	
Referer	nce Books				
	ndaresan,V., Ganapathy Subramanian, K.S. and Ganesan, K Inagement Techniques. [Eighth Edition]. AR Publication, Ch			source	
2 Sha	<i>Charma, J.K.</i> 2007. Introduction to Operations Research Theory and Applications. [Third Edition]. MacMillan India Ltd., New Delhi.				

After completion of the course, the students will be able to

CO 1	Learn the importance of Resource management techniques and modeling		
CO 2	Formulate and solve real life problems through LPP		
CO 3	Find the optimum transportation schedule and assignment model		
CO 4	Know the concepts of Decision theory		
CO 5	Use the techniques for planning and scheduling of projects		

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
CO 1	М	М	Н	L	L	
CO 2	Н	М	L	М	L	
CO 3	Н	Н	М	L	М	
CO 4	L	Н	М	Н	Н	
CO 5	М	М	L	М	М	
H-High; M-Medium; L-Low						