MASTER OF SCIENCE (APPLIED MICROBIOLOGY)

VISION

To produce intellectual mind and professionals through innovative research and inventions for the enhancement of society.

MISSION

- To establish overall competence among the students by inculcating energetic thinking and positive spirit.
- To cultivate knowledge, skills, values and confidence for the students excellence through research in their area of expertise or interest.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- **PEO 1:** To provide the students with subject proficiency, environmental awareness, ethical codes and guidelines, along with life education for a successful professional career.
- **PEO2:** To inculcate the student's professional competencies and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and related to life science.
- **PEO3:** To train students with good technical skills in research to comprehend, analyze, design, novel products and to give solutions for the real life problems.

PROGRAMME OUTCOMES (PO)

After completion of the programme, the graduates will be able to

- **PO1:** Acquire and apply specialized skills and knowledge relevant to the needs of the society.
- **PO2:** Develop the skills in handling instruments, planning and performing experiments to meet desired needs within realistic constraints through domain knowledge.
- **PO3:** Expand a modern and scientific outlook with respect to science subjects and apply in all aspects of life.
- **PO4:** Apply modern tools and technologies for sustainable development and welfare of the society.

PO5: Create and develop eco-friendly environment and microbial products through innovative research ideas.

PROGRAMME SPECIFIC OUTCOMES (PSO)

After completion of the programme, the graduates will be able to

- **PSO1:** Recall the fundamentals of microbiology which would enable them to comprehend the emerging and advanced scientific concepts in life sciences.
- **PSO2:** Apply the acquired conceptual knowledge by connecting interdisciplinary aspects of microbiology.
- **PSO3:** Evaluate the need and impact of scientific solutions on the environment for the betterment of society.
- **PSO4:** Analyze the technical knowledge in microbiology for research and lifelong learning.
- **PSO5:** Create and develop the employable, entrepreneur and socially responsible citizens.

MASTER OF SCIENCE (APPLIED MICROBIOLOGY) REGULATIONS

ELIGIBILITY

Candidate who has passed the B.Sc., degree in any Life sciences (Microbiology/ Applied Microbiology / Industrial Microbiology/ Botany / Plant Sciences and Plant Biotechnology/ Zoology /Animal Science/Applied Animal Science and Animal Biotechnology/Biochemistry /Bioinformatics /Biology /Life Sciences/ Home Science/ Food Science & Nutrition/ BSMS/ BAMS/ BUMS/ Chemistry with Botany/ Zoology as Allied Subjects of this University or any Examination of any other University accepted by the Syndicate as equivalent thereto shall be eligible for admission to M.Sc. Degree Course in Microbiology.

Candidate shall be admitted to the examination only if he / she has taken the qualifying degree in Science / Medical subjects as mentioned after having completed the prescribed courses consisting of twelve years of study and has passed the qualifying examination.

DURATION OF PROGRAMME

M.Sc., Applied Microbiology is a two years program which comprised of four semesters.

MAXIMUM DURATION FOR THE COMPLETION OF THE PG PROGRAMME

The maximum duration for completion of the PG Programme shall not exceed 8 semesters.

Subject Code	Subject	Hours of	Exam	Maximum Marks		Credit	
,	Subject	Instruction	Duration	CA	CE	Total	Points
	FIRS	T SEMESTE	R				
		Part A					
	Core I: Fundamentals of						
18PMBM101	Microbiology and	5	3	25	75	100	5
	Taxonomy						
	Core II:						
18PMBM102	Microbial Biochemistry and	5	3	25	75	100	5
	Physiology						
18PMBM103	Core III: Microbial Genetics	5	3	25	75	100	5
18PMBM104	Core IV: Immunology	5	3	25	75	100	5
18PMBM105	Core V: Bioinstrumentation	4	3	25	75	100	4
	Core Practical I:						
	Fundamentals of						
	Microbiology & Taxonomy,						
18PMBMP101	Microbial Biochemistry &	5	9	40	60	100	4
	Physiology, Microbial						
	Genetics, Immunology &						
	Bioinstrumentation						
	۲ ا	Non Credit					
18PLS101	Career Competency Skills I	1	-	-	-	-	-
	Total	30				600	28
	SECO	ND SEMEST	ER				
		Part A					
18PMBM201	Core VI: Soil and	5	3	25	75	100	5
101 101201	Agricultural Microbiology	6	0	20	10	100	Ū
18PMBM202	Core VII:	5	3	25	75	100	5
101 10101202	Medical Microbiology		0	20	10	100	Ŭ
18PMBEL201	Elective I	5	3	25	75	100	4
	Core Practical II: Soil and						
18PMBMP201	Agricultural Microbiology,	6	9	40	60	100	4
	Medical Microbiology,	, v	-			200	
	Environmental						

SCHEME OF EXAMINATION

	Microbiology and Cell						
	biology						
Optional Subjec	ts						
18PBCMBI201	IDC I:	3	3	25	75	100	2
	Diagnostic Biochemistry	5	5	25	75	100	2
18PBCMBIP201	IDC Practical I:	z	3	40	60	100	2
18PBCMBIP201	Diagnostic Biochemistry	5	5	40	00	100	2
18PBTMBI201	IDC I: Plant Tissue Culture	3	3	25	75	100	2
	Technology			20	70	100	
18PBTMBIP201	IDC Practical I: Plant Tissue	3	3	40	60	100	2
	Culture Technology	0	0	10	00	100	
		Part B		T			
18PVE201	Value Education :	2	3	25	75	100	2
	Human Rights		2 0 20				
	1	Non Credit	Г	1	r	r	r
18PLS201	Career Competency Skills II	1	-	-	-	-	-
	Total	30				700	24
	THIR	D SEMESTI	ER	I			
		Dart A					
		I all A					
18PMBM301	Core VIII: Genetic	f alt A	3	25	75	100	5
18PMBM301	Core VIII: Genetic Engineering	6	3	25	75	100	5
18PMBM301	CoreVIII:GeneticEngineeringCoreIX:Biostatisticsand	6 5	3	25	75 75	100	5
18PMBM301 18PMBM302	CoreVIII:GeneticEngineeringCoreIX:BiostatisticsandResearchMethodology	6 5	3	25 25	75 75	100 100	5
18PMBM301 18PMBM302 18PMBEL301	CoreVIII:GeneticEngineeringCoreIX:BiostatisticsandResearchMethodologyElective II </td <td>6 5 5</td> <td>3 3 3</td> <td>25 25 25</td> <td>75 75 75</td> <td>100 100 100</td> <td>5 4 5</td>	6 5 5	3 3 3	25 25 25	75 75 75	100 100 100	5 4 5
18PMBM301 18PMBM302 18PMBEL301	CoreVIII:GeneticEngineering	6 5 5	3 3 3	25 25 25	75 75 75	100 100 100	5 4 5
18PMBM301 18PMBM302 18PMBEL301	CoreVIII:GeneticEngineeringCoreIX:BiostatisticsandResearchMethodologyElective IICorePracticalIII:GeneticEngineering,Industrial	6 5 5	3 3 3	25 25 25	75 75 75	100 100 100	5 4 5
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301	CoreVIII:GeneticEngineeringCoreIX:BiostatisticsandResearchMethodologyElective IICorePracticalIII:GeneticEngineering,IndustrialMicrobiology,andFood	6 5 5 6	3 3 3 9	25 25 25 40	75 75 75 60	100 100 100	5 4 5 3
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301	CoreVIII:GeneticEngineeringCoreIX:BiostatisticsandResearchMethodogyElective IICorePracticalIII:GeneticEngineering,IndustrialMicrobiology,andAnd Dairy	6 5 5 6	3 3 3 9	25 25 25 40	75 75 75 60	100 100 100	5 4 5 3
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302	CoreVIII:GeneticEngineeringGeneticCoreIX:BiostatisticsResearchMethodologyElective IIGeneticCorePracticalIII:Geneering,IndustrialMicrobiology,andFoodand DairyMicrobiologyCorePracticalStatisticalStatistical	6 5 5 6	3 3 3 9	25 25 25 40	75 75 75 60	100 100 100 100	5 4 5 3
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302	CoreVIII:GeneticEngineeringGoreIX:CoreIX:BiostatisticsandResearchMethodologyGoreGoreElective IIGeneticIndustrialCorePractical III:GeneticEngineering,IndustrialMicrobiology,andFoodand DairyMicrobiologyGoreCorePractical IV:StatisticalSoftwareSoftwareSoftware	6 5 5 6 2	3 3 3 9 3	25 25 25 40 40	75 75 60 60	100 100 100 100	5 4 5 3 2
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302	Core VIII: Genetic Engineering Core IX: Biostatistics and Research Methodology Elective II Core Practical III: Genetic Engineering, Industrial Microbiology, and Food and Dairy Microbiology Core Practical IV: Statistical Software	6 5 6 2 onal Subject	3 3 3 9 3 5	25 25 25 40 40	75 75 75 60 60	100 100 100 100	5 4 5 3 2
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302	CoreVIII:GeneticEngineeringGeneticCoreIX:Biostatistics andResearch MethodologyBiostatistics andElective IIGeneticCorePractical III:GeneticEngineering,IndustrialMicrobiology,andFoodand DairyWicrobiology.AndCorePractical IV:StatisticalSoftwareOptiIDC II:Senetic	6 5 6 2 onal Subject	3 3 3 9 3 :s	25 25 25 40 40	75 75 60 60	100 100 100 100	5 4 5 3 2
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302 18PMBMP302 18PMBMP301	CoreVIII:GeneticEngineeringGoneticCoreIX:BiostatisticsandResearchMethodologyElective IIIndustrialCorePractical III:GoreIndustrialMicrobiology,andAnd DairyMicrobiologyCorePractical IV:SoftwareOptiIDC II:Pharmaceutical	6 5 6 2 onal Subject	3 3 3 9 3 is 3	25 25 25 40 40 25	75 75 60 60 75	100 100 100 100 100	5 4 5 3 2 2
18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302 18PMBMP301	CoreVIII:GeneticEngineeringGore IX:Biostatistics andCore IX:Biostatistics andBiochemistryResearchMethodologyMethodologyElective IIGeneticIndustrialCorePractical III:GeneticEngineering,IndustrialMicrobiology,andFoodand DairyMicrobiologyGoreCorePractical IV:StatisticalSoftwareOpti	6 5 6 2 onal Subject 3	3 3 3 9 3 :s 3	25 25 40 40 25	75 75 60 60 75	100 100 100 100 100	5 4 5 3 2 2
 18PMBM301 18PMBM302 18PMBEL301 18PMBMP301 18PMBMP302 18PBCMBI301 18PBCMBI201 	CoreVIII:GeneticEngineeringGoneticCoreIX:Biostatistics andResearchMethodologyElective IIIndustrialCorePractical III:GeneticEngineering,IndustrialMicrobiology,andFoodand DairyMicrobiologyGoreCorePractical IV:StatisticalSoftwareOptiIDC II:PharmaceuticalBiochemistryIDC Practical II:	6 5 5 6 2 onal Subject 3	3 3 3 9 3 :s 3	25 25 25 40 40 25 40	75 75 60 60 75 60	100 100 100 100 100	5 4 5 3 2 2 2

	Biochemistry						
18PBTMBI301	IDC II: Animal Tissue Culture Technology	3	3	25	75	100	2
18PBTMBIP301	IDC Practical II: : Animal Tissue Culture Technology	3	3	40	60	100	2
Part B							
	Total	30				700	23
	FOUR	TH SEMEST	ER				
		Part A					
18PMBM401	Core X: Industrial Microbiology	5	3	25	75	100	4
18PMBM402	Core XI: Food and Dairy Microbiology	5	3	25	75	100	5
18PMBPR401	Project and Viva Voce	5	-	50	150	200	6
	Total	15				400	15
	Grand Total					2400	90

ELECTIVE

The students shall choose any one of the following subjects as Elective I and II in the Second and Third semesters respectively.

Elective I

S.No.	SEMESTER	SUBJECT CODE	SUBJECT
1.	II	18PMBEL201	Elective I: Environmental Microbiology
		18PMBEL202	Elective I: Cell Biology

Elective II

S.No.	SEMESTER	SUBJECT CODE	SUBJECT
1.	III	18PMBEL301	Elective II: Bioinformatics, Bioethics and IPR
		18PMBEL302	Elective II: Pharmaceutical Microbiology

FOR COURSE COMPLETION

- Student shall complete:
- Value Education: Human Rights in II semester.
- IDC in II and III semester.
- Elective subjects in II and III semesters.
- Project & Viva-Voce in IV semester.
- Career Competency Skills in I and II semester.

TOTAL MARKS AND CREDIT DISTRIBUTION

S.No.	COMPONENT	MARK	CREDITS
1.	PART A: Core, Elective and IDC subjects	2300	88
2.	PART B: Value Education	100	02
	TOTAL	2400	90

18PMBM101

CORE I : FUNDAMENTALS OF MICROBIOLOGY AND TAXONOMY

SEMESTER I

Course Objectives:

The course aims

- To recall the basics of Microbiology.
- To acquire the knowledge about microbial media and sterilization.
- To study the cell structure, microbial nutrition and growth.

Credits	: 05 T	otal Ho	urs: 50
UNIT	CONTENTS	Hrs	CO
Ι	Spontaneous generation theory : Contribution to microbiology by Antony Van Leeuwenhoek, Louis Pasteur, Robert Koch, Alexander Fleming, Joseph Lister and Edward Jenner. Prokaryotic cell structure: cell membrane – Archeal membrane, cytoplasmic matrix – inclusion bodies – ribosomes. Nucleoids and plasmids. Components externals to cell wall (capsule, slime layers and S layers). Pili and fimbriae- Flagella- Chemotaxis. Bacterial endospores.	10	CO1
II	Microbial structure: Bright field microscope – resolution, numerical aperture. Types of microscopy - Dark field microscope, Phase contrast microscope, Fluorescent microscope. Electron microscope – Scanning Electron Microscope and Transmission electron microscope – Confocal Microscope. Stains – simple, differential and special staining.	10	CO2
III	Microbial nutrition : Nutritional requirements, nutritional types of microorganisms. Uptake of nutrients – passive diffusion, facilitated diffusion, active transport, group translocation and ion uptake. Types of media - simple media, complex media, selective media, enriched media,	10	CO3

	differential media. Pure cultures techniques - spread plate,				
	streak plate and pour plate.				
	Microbial evolution: Classical classification – Haeckel's				
	three kingdom concepts - Whittaker's five kingdom				
IV	concepts. Taxonomy hierarchy - binomial nomenclature.	10	CO4		
	Classical systems of classification – dichotomy,				
	chemotaxonomy and numerical taxonomy.				
	Molecular based classification: DNA - DNA hybridization				
V	- protein sequencing - rRNA sequencing. Classification and	10	COF		
v	salient features of bacteria according to the Bergey's	10	05		
	manual of determinative bacteriology.				
Text Bo	ooks:	1	1		
1.	Prescott, L.M., Harley, J. P and Klein, D.A. 2012. Microbic	ology. [Eighth		
	Edition]. WMC. Brown Publishers.				
	Atlas, R.M. 1997. Principles of Microbiology. [Second Edition	ı]. WCF	K. Mc		
2.	Graw- Hill.				
Referen	Reference Books:				
1.	Robert F Boyd. 1984. General Microbiology. Times Mirror/N	Mosby (College		
	Publishers, Boston.				
2.	Edward Alcamo. 2001. Fundamentals of Microbiology. [Sixth]	Edition]	. Jones		
	and Bartlett Publishers, New York.				
3.	Black, J.G. 1999. Microbiology-Principles and Exploration. [Fo	ourth E	dition].		
	Prentice Hall International Inc.				

After completion of the course, the students' will be able to

CO1	Recall the scope and concepts of Microbiology.
CO2	Apply the microscopic and staining techniques for visualization of bacteria in the laboratory.
CO3	Formulate media and apply various parameters for microbial growth.
CO4	Apply aseptic condition for maintenance of pure culture and control of contaminants.
CO5	Assess the use of antibiotics to control pathogens and treatment of microbial diseases.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	Н	М
CO2	М	М	Н	Н	М
CO3	Н	М	Н	М	М
CO4	М	М	М	М	М
CO5	М	М	Н	Н	Н

M.Sc., Applied Microbiology (Students admitted from 2018-2019 onwards)

		CORE II: MICROBIAL BIOCHEMISTRY				
18PN	1BM102	AND PHYSIOLOGY	SI	SEMESTER I		
Course	Objectives	:				
The cou	ırse aims					
• [Fo formula	te the students aware about the role of biochem	nistry	in mio	crobial	
	metabolism	۱.				
• [Го illustrate	the various pathways involved in microbial metal	oolisi	n.		
Credi	ts: 05		То	tal Hou	rs: 50	
UNIT		CONTENTS		Hrs	CO	
	Enzyme	and enzyme kinetics: Introduction, classificati	on,			
	properties	and specificity of enzyme, recognition of enzym	nes-			
Ι	inhibiting agent. Coenzyme, lysozyme, isozyme, kinetic theory			10	CO1	
	of reactior	n- control of enzyme synthesis- mechanism of enzy	me			
	action. Lo	cation of enzymes in the cell.				
тт	Biomolect	ules: Classification and structure of carbohydra	ites,	10	CO2	
11	Protein and Lipids.			10	02	
	Microbial	growth: Prokaryotic cell cycle (binary fusion	n).			
	Growth cu	arve- different phases of growth- kinetics of growt	th.			
тт	Measurem	nent of microbial growth- cell number, membra	ne	10	CO3	
111	filtration	procedure and cell mass. Continuous cultur	e-	10	005	
	chemostat	and turbidostat; Synchronous culture. Vario	us			
	factors on	growth – physical and chemical.				
	Microbial	metabolism: Anabolism- photosynthesis- oxyge	enic			
	and ano	xygenic. Catabolic metabolism- The Embd	len-			
IV	Meyerhof	- Parnas pathway, The Enter- Doudoroff, Citric a	acid	10	CO4	
	cycle, Ele	ectron transport chain. Anaerobic respiration	and			
	fermentati	ion – lactic acid, propionic acid and alcohol.				
v	Protein a	nd lipid metabolism: protein metabolism- lys	sine	10	CO5	
	pathway,	serine pahway and arginine pathway. Integration	n of	10	005	

	metabolic pathway. ß oxidation of lipids.					
Text Bo	Text Books:					
1.	Deb, A.C. 2006. Fundamentals of Biochemistry. New Central H	Book Ag	gencies			
	Pvt. Ltd., Kolkatta.					
	Salle, A.J. 2001. Fundamental Principles of Bacteriology. [Sevent]	h Editio	n].			
2.	Tata Mc Graw-Hill, New Delhi.					
Referer	nce Books:					
1.	Albert L. Lehninger., Michael M. Cox and David L. Nelson. 2008.	Princi	ples of			
	Biochemistry . [Fifth edition]. W H Freeman & Co., New York.	-	L			
2.	Edward Alcamo. 2001. Fundamentals of Microbiology. [Sixth Ed	ition]. J	ones &			
	Bartlett Publishers, New York.					
3.	Hans G Schlegel. 2003. General Microbiology. [Seventh Edition	n]. Carr	ıbridge			
	University Press, UK.					

After completion of the course, the students' will be able to

CO1	Assess the role of mechanism and function of enzymes.
CO2	Discuss the structure and importance of biomolecules.
CO3	Apply the various parameters for microbial growth.
CO4	Design the important strategies for fermentation.
CO5	Evaluate the metabolism and biological role of lipids.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	М	Н
CO2	Н	М	М	Н	Н
CO3	М	Н	Н	Н	М
CO4	Н	Н	Н	Н	Н

18PMI	18PMBM103CORE III: MICROBIAL GENETICSS		SEMEST	ER I	
Course	Course Objectives:				
The cou	ırse aims				
• To	enable th	ne students to understand the genetic organization of a	nicrobes.		
• To	impart tł	ne significant processes involving in microbial genetic	3.		
Credit	ts: 05		Total Hou	ırs: 50	
UNIT		CONTENTS	Hrs	CO	
	Organiz	ation of prokaryotic and eukaryotic genome: Nucle	eic		
	acids- S	tructure of DNA, types of DNA, Chargaff rule an	nd		
	types of	f RNA. Transfer of genetic materials in prokaryote	es:		
Ι	Transfor	mation- competence and mechanism. Conjugation- t	he 10	CO1	
	classical	bacterial conjugation experiment - types of conjugation	on		
	- conjug	ation in mapping the bacterial genome. Transductior	L —		
	generali	zed and specialized transduction.			
	DNA	replication: Semi-conservative mode of DN	A		
	replicati	on- enzymology of DNA replication- Messelson an	d		
	Stahl e	xperiment- rolling circle replication- bidirection	al		
п	replicati	on. Transcription (Prokaryotes) - the basic mechanism	n 10	cor	
11	of transc	cription- process of transcription- initiation- elongatio	n	02	
	and to	ermination- Inhibitors of transcription- Po	st		
	transcrip	ptional modification of m-RNA- temporal control	of		
	transcrip	ption.			
	Translat	tion, expression and regulation: Translation- the	<u>,</u>		
	genetic	code-mechanism of translation- initiation-elongaton	-		
тт	terminat	tion- inhibitors of translation. Post translationa	1	CO3	
111	modifica	ations. Gene regulation- General aspects o	f	05	
	prokary	otic gene regulation -Operon concept- the lac, trp, and	ı		
	and Ga	<i>l</i> operon. Eukaryotic gene regulation- regulatory	7		

	strategies in Eukaryotes - gene alteration - regulation of				
	synthesis of primary transcripts.				
	Mutation: Types - somatic versus germ line mutation,				
	morphological mutation, nutritional mutation, lethal mutations				
	and conditional mutations. Molecular basis of mutation -				
	Missense and nonsense mutations, spontaneous mutations,				
IV	chemical mutagenesis, radiation - induced mutations, silent	10	CO4		
	mutations and reversions. Detection of mutants- replica plate				
	and gradient plate method. Carcinogenicity test. DNA repair -				
	Biological indication of repair - biochemical mechanisms for				
	repair of thymine dimers- light and dark repair.				
	Recombination and plasmids: General properties - types of				
	plasmids and its derivatives. Transposable elements -				
	definition - types of bacterial transposons - mechanism of				
V	transposition. Bacterial Artificial Chromosome and Yeast	10	CO5		
	Artificial Chromosome. Genetic recombination- mechanism of				
	general recombination -Holliday model, site specific				
	recombination.				
Text Bo	poks:				
1.	Deb, A.C. 2006. Fundamentals of Biochemistry. New Central H	Book Ag	gencies		
	Pvt. Ltd., Kolkatta.				
	Salle, A.J. 2001. Fundamental Principles of Bacteriology. [Sevent	h Editio	n].		
2.	Tata Mc Graw-Hill, New Delhi.				

Referer	nce Books:
1.	Albert L. Lehninger., Michael M. Cox and David L. Nelson. 2008. Principles of
	Biochemistry. [Fifth edition]. W H Freeman & Co., New York.
2.	Edward Alcamo. 2001. Fundamentals of Microbiology. [Sixth Edition]. Jones &
	Bartlett Publishers, New York.
3.	Hans G Schlegel. 2003. General Microbiology. [Seventh Edition]. Cambridge
	University Press, UK.

After completion of the course, the students' will be able to

CO1	Recall the basics about prokaryotic and eukaryotic genome and DNA repair
	mechanisms.
CO2	Apply the genomic knowledge for the production of novel proteins.
CO3	Evaluate the regulation system of gene for various industrial products.
CO4	Explain about mutation and its types and apply for its detection.
CO5	Assess gene transfer mechanisms for production of novel products.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н
CO3	М	Н	Н	Н	Н
CO4	М	Н	М	М	М
CO5	М	Н	Н	Н	Н

18PM	18PMBM104CORE IV: IMMUNOLOGYSE		MESTE	ER I	
Course	Objectives	•			
The cou	irse aims				
• To le	earn functio	ons of immune system and their immune comp	olexes.		
• To u	inderstand	the mechanisms of immune response and auto	oimmu	ne disoı	ders.
Credits	: 05		T	otal Ho	urs: 50
UNIT		CONTENTS		Hrs	СО
	Historical	perspective of Immunology: Hematopoie	esis –		
	process ar	d regulation, stromal cells, programmed cell o	leath.		
Ŧ	Cells of th	e immune system – Organs of the immune sy	ystem	10	601
1	- primary	and secondary lymphoid organs. Early the	eories	10	COI
	and clona	al selection theory. Innate immunity, acq	uired		
	Immunity	, humoral and cell mediated immunity.			
	Antigens:	Factors influencing immunogenicity - epi	topes,		
	haptens a	nd adjuvants. Immunoglobulins - basic stru	icture		
т	and classe	s - Diversity. Monoclonal antibodies - produ	ction,	10	CO2
11	formation	and clinical uses. Antigen - Antibody reacti	ons –	10	02
	agglutinat	ion, precipitation, complement fix	ation,		
	immunofl	uorescence, ELISA and Radio Immunoassay.			
	Antigen	processing and Histocompatability con	nplex:		
	Antigen	processing cells, Processing of exogenous	and		
ш	endogeno	us antigens. Major Histocompatibility comp	olex –	10	CO3
111	structure	and functions - Class I, Class II and Cla	ss III	10	05
	molecules	. T - Cell receptor - structure, organization	n and		
	maturation	n. Cytokines – Structure and functions.			
	Complem	ent activation: Classical, alternative and ter	minal		
IV	compleme	nt pathways. Hypersensitive reaction	s –	10	CO4
	classificati	on – IgE mediated (Type –I), antibody med	liated		

	cytotoxic (Type -II), immune complex mediated (Type III),		
	TDTH - mediated (Type IV). Vaccines - active and passive		
	immunization, Types of Vaccines - polysaccharide, toxoid		
	and recombinant vaccines.		
	Autoimmunity: Organ specific autoimmune diseases -		
	diseases mediated by direct cellular damage and stimulating		
	or blocking antibodies- Hashimotus Thyrioditis, autoimmune		
V	anemia's, Grave's Disease, Myasthenia Gravis. Systemic	10	CO5
	autoimmune disease - Systemic lupus erythematosus.		
	Transplantation immunology - Graft versus host reactions -		
	Tumor immunology.		
Text Bo	ooks:	1	
1.	Richard A Goldsby, Thomas J. Kindt, Barbara A Osborn and Jan	is Kuby	. 2003.
	Immunology. [Fifth Edition]. W. H. Freeman and Company, N	lew Yor	k.
2.	<i>Tizard, K.</i> 2004. Immunology – An Introduction . Saun	ders C	ollege,
	Philadelphia.		
Referen	nce Books:		
1.	Ivan Roitt, Jonathan Brostolf and David Male. 2004. Immur	nology.	[Sixth
	Edition]. Mosby Publications, Edinburg.		
2.	Abul Abbas. 2011. Cell and Molecular Immunology. [Sev	enth Ea	dition].
	Saunders, USA.		

After completion of the course, the students will be able to

CO1	Recall the basics concepts of immunology.
CO2	Analyze the knowledge of proteins for the detection and prevention of
	diseases.
CO3	Evaluate the regulatory mechanism of the body against foreign antigens.
CO4	Apply knowledge of immune system for vaccine production.
CO5	Formulate and develop anti-hypersensitivity drugs.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	М	М
CO2	Н	Н	Н	Н	Н
CO3	М	М	М	М	М
CO4	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н

18PMBM105

CORE V: BIOINSTRUMENTATION

SEMESTER I

Course Objectives:

The course aims

- To expose the students to the basic principles, working mechanism and applications of various analytical instruments.
- To foster the needs of the present day students to meet out the requirements of analytical techniques in biology.

Credit	ts: 04 To	tal Hou	rs: 40
UNIT	CONTENTS	Hrs	CO
T	Centrifugation: Principles of sedimentation, centrifugal force,		
	Swedberg constant. Types of centrifuges - Desk top, High	08	CO1
1	speed and Ultra Centrifuge. Centrifugation - methods and its	00	COI
	applications – Differential, Density gradient.		
	Chromatography: Fundamental concepts – Stationary Phase,		
т	Mobile Phase, Elution, Retention. Working Principle and	00	cor
11	applications of Paper, Thin layer, column, Ion exchange,	08	02
	Affinity chromatography, GC - MS, HPLC, LC - MS.		
	Electrophoresis: Basic principles, Factors affecting		
	electrophoretic mobility, Types of electrophoresis -Paper		
TTT	electrophoresis, Agarose gel electrophoresis, Sodium Dodecyl	00	cor
111	Sulphate - Poly Acrylamide Gel Electrophoresis, Two	08	03
	Dimensional and Immuno electrophoresis, Capillary		
	electrophoresis.		
	Spectroscopy: Basic Principles – Beer Lambert's law.		
IV	Instrumentation, working mechanism and applications of		
	Colorimeter, UV-VIS Spectrophotometer, Atomic Absorption	08	CO4
	Spectrophotometer, Nuclear Magnetic Resonance		
	Spectrophotometer, XRD; Mass spectrophotometry -		

	principle and applications. MALDI-TOF.		
	Radioisotopes and Physicochemical Techniques:		
V	Radioactivity - Measurement - GM Counter,	08	CO5
	Autoradiography and Liquid Scintillation Counter. FTIR.		
Text Bo	ooks:		
1.	Upadhyay, A. and Upadhyay, K. 1998. Biophysical Chemistry – I	Principl	es and
	Techniques. [Third Edition]. Himalaya Publishing House, Mumb	oai.	
2.	Wilson, K. and Walker, J. 2003. Practical Biochemistry - P	rinciple	es and
	Techniques. [Sixth Edition]. Cambridge University Press, Cambr	idge, U	K.
Reference Books:			
1.	Palanivelu, P. 2001. Analytical Biochemistry and Separation Te	echniqu	es – A
	Laboratory Manual. [Second Edition]. Tulsi Book Centre, Madur	ai.	
2.	Asokan, P. 2001. Analytical Biochemistry (Biochemical Tech	niques).	. [First
	Edition]. Chinnaa Publications, Vellore.		
3.	Vogel, A.I, Tatchell, A.R., Furnis, B.S., Hannaford, A.J. and Smith	, P.W.G	. 1989.
	Vogel's Textbook of Practical Organic Chemistry. [Fifth Editi	on]. Lo	ngman
	Publications, UK		
4.	Skoog, D.A. 2006. Principles of Instrumental Analysis. [S	Sixth E	dition].
	Thompson Brooks/Cole: Belmont, CA.		

After completion of the course, the students' will be able to

CO1	Analyze the separation methods of biomolecules based on hydrodynamic
	characters.
CO2	Evaluate the biomolecules from known standards.
CO3	Demonstrate the characteristics of biomolecules based on charges.
CO4	Assess the biomolecules based on spectral purity.
CO5	Predict biomolecules using radioisotopes.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	Н
CO2	Н	М	Н	Н	Н
CO3	М	М	М	М	М
CO4	Н	М	М	Н	Н
CO5	М	Н	Н	Н	Н

18PMBMP1 Course Obje The course ai • To learr • To unde	CORE PRACTICAL I (Fundamentals of Microbiology and Taxonomy, Microbial Biochemistry and Physiology, Microbial Genetics, Immunology & Bioinstrumentation) ctives ims the basic techniques of microbiology.	, SEM	ESTER I
• To culti	vate and maintain the microorganisms.		
Credit: 04		Total	Hours: 60
Experiment	CONTENTS	Hrs	CO
1.	Measurement of bacterial cell size - Micrometry	3	CO1
2.	Pure culture techniques	2	CO2
3.	Motility – Hanging drop technique - Soft agar 5		CO1
4.	Measurement of bacterial growth – Growth curve	5	CO4
5.	Simple staining	3	CO1
6.	Capsular staining	3	CO1
7.	Gram staining	3	CO1
8.	Endospore staining	3	CO1
9.	Acid-fast staining	3	CO1
10.	The effect of temperature on growth	5	CO4
11.	IMViC tests	3	CO3
12.	Carbohydrate fermentation 5 CC		CO3
13.	Triple sugar iron (TSI) agar test.	5	CO3
14.	ABO Blood grouping - Rh typing and cross3CO5matching		CO5
15.	Agglutination tests - WIDAL, RA, ASO and CRP	3	CO5

16.	ODD and CIE	3	CO5
17.	ELISA – tridot (demo)		CO5
Reference Bo	ooks:		
	James G. Cappucino and Sherman Natalie 2005.	Microbio	ology – A
1.	Laboratory Manual. [Seventh edition]. Pearson ed	lucation I	ndia, New
	Delhi.		

After completion of the course, the students' will be able to

CO1	Identify and measure the size of the microbes through staining and
	micrometry with microscopy
CO2	Evaluate the isolation and purification of microorganisms.
CO3	Analyze the characteristics of microorganisms based on standard biochemical
	techniques.
CO4	Assess the bacterial growth and analyze its growth by physical
	environments.
CO5	Apply serological analysis for the detection of various infections.

18PLS101	CAREER COMPETENCY SKILLS - I	SEMESTER I

Course Objectives:

The course aims

- To impart knowledge on the Aptitude.
- To enhance employability skills and to develop career competency.

		Total	Hours: 15	
UNIT	CONTENTS	Hrs	СО	
I	Solving Simultaneous Equations Faster – Number System : HCF, LCM – Square roots and Cube roots - Averages	3	CO1	
Π	Problems on Numbers -Problems on Ages	3	CO2	
III	Calendar – Clocks – Pipes and Cisterns	3	CO3	
IV	Time and Work – Time and Distance	3	CO4	
V	Ratio and Proportion – Partnership – Chain Rule	3	CO5	
Text Book:				
1.	Aggarwal R.S. 2013. Quantitative Aptitude. [Seventh]	Revised	Edition].	
	S.Chand & Co., New Delhi.			
Referenc	e Book :			
1.	Abhijith Guha, Quantitative Aptitude for Competitive	Examina	tions, 5 th	
	Edition, Tata McGraw Hill, 2015, New Delhi.			

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO1	Carry out mathematical calculations using shortcuts.
CO2	Calculate Problems on Ages with shortcuts.
CO3	Understand the core concepts of Pipes & Cisterns, Calendar & Clocks.
CO4	Obtain knowledge on shortcuts to Time & Work and Time & Distance.
CO5	Calculate Ratio & Proportion, Partnership with shortcuts.

18PMBM201		CORE VI: SOIL AND AGRICULTURAL MICROBIOLOGY	SI	EMEST	ER II
Course Objectives:					
The cou	urse aims				
• [Го understar	nd the types and role of soil microorganisms.			
• [Го ascertain	the importance and application of bio-ferti	ilizers	and	
ł	piocontrol ag	gents.			
Credit	ts: 05		- -	Гotal Н	ours: 50
UNIT		CONTENTS		Hrs	CO
	Soil Profi	le: Properties of soil, structure, texture	and		
	formation	of soil. Soil profile types. Classification of	soil.		
	Microbial	grouping- Autochthonous, zymoge	nous		
т	population	. Role of microbes in soil fertility, influence o	f soil	10	CO1
-	environme	ntal factors on microflora. Significance of	soil		cor
	microbes	Bacteria, Archaea, eukaryotic algae	and		
	cyanobacte	ria, fungi, Actinomycetes, protozoa, Nema	atode		
	and viruse	5.			
	Biogeoche	mical cycle: Carbon cycle, degradatior	n of		
	polysaccha	rides, phosphorous cycle, Nitrogen c	cycle.		
	Biological	nitrogen fixation- Symbiotic Nitrogen fixers,	Root		
II	nodule for	mation. Non symbiotic bacteria - cyanobac	teria.	10	CO2
	Biochemist	ry of nitrogen fixation- Nitrogenase, enz	zyme		
	complex -	associative dinitrogen fixation-process physic	ology		
	and genetic	cs of dinitrogen fixation.			
	Biofertiliz	ers: Mass multiplication, field application and	crop		
III	response	to Rhizobium, Azotobacter, Azospiru	llum,	10	CO3
	Phosphobac	teria, Cyanobacteria, Azolla and Mycorrhizae.			
IV	Plant path	ology: Introduction, Symptoms, disease cycle	e and	10	CO4

	control measures. Bacterial diseases- Blight of rice, Citrus		
	canker. Mycoplasama disease- little leaf of brinjal, TMV.		
	Fungal disease- Blast of rice, Light blight of potato, Rust of		
	wheat, Red rot of sugarcane, Brown spot of rice, Wilt of		
	cotton and Tikka leaf spot of groundnut.		
	Biopesticide and biocontrol agents: Mode of action,		
	formulation and application methods of Bacteria - Bacillus		
V	thuringenesis; Fungal- Breuvaria bassiana and viral- Nuclear	10	CO5
	polyhedrosis and Baculovirus. Trichoderma viridae and		
	Pseudomonas fluorescens.		
Text Bo	ooks:	1	
1.	Atlas, R.M. and Bartha, R. 1992. Microbial Ecology - Fun	ndamen	tals and
	Applications. [Fourth Edition]. Red Wood City C.A Benjar	min/Cu	ımmings.
	Menlo Park, California, USA.		
2.	Martin Alexander. 1997. Introduction to Soil Microbiology. Joh	nn Wile	y & Sons,
	New York, USA.		
3.	Rangaswami. G. and A. Mahadvan. 1999. Diseases of crop	plants i	in India.
	Fourth edition. Prentice Hall of India Pvt Ltd., New Delhi.		
4.	Subba Rao, N.S. 1982. Advances in Agricultural Microbiology	. Oxford	and LBH
	publishing co.		
5.	Alexander N. Glazer and Hiroshi Nikaido. Microbiol	biotec	hnology-
	Fundamentals of Applied Microbiology. W.H. Freeman and Co	, New yo	ork.

Referenc	e Books:
1.	Subbha Rao, M.S. 1995. Soil Microorganisms and Plant Growth. Oxford and
	IBH. New Delhi.
2.	Paul, E.A. 2007. Soil Microbiology and Biochemistry. [Third Edition].
	Academic Press - An imprint of Elsevier, Burlington, USA.
3.	Bawden. F.C. 1999. Plant Diseases. Greenworld. First Edition in India.
	Efficient offset printers. New Delhi.
4.	Atlas, A.M. and R. Bartha. 1998. Microbial Ecology. Fundamentals and
	Applications. An imprint of Addison Wesley longmann Inc.
5.	Mark S. Coney., 1999. Soil Microbiology: An exploratory approach., Delmar
	publishers, Singapore.

After completion of the course, the students' will be able to

CO1	Analyze the soil-microbe interaction and understand the factors influencing
cor	the interaction.
CO2	Prepare effective biofertilizers for improving soil health.
CO3	Demonstrate the techniques for mass production of biofertilizers.
CO4	Assess the disease diagnosis of the plants from phytopathogens.
CO5	Create awareness for plant protection using biocontrol agents.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	М	Н
CO2	М	Н	Н	Н	Н
CO3	М	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н
CO5	М	Н	Н	Н	Н

18PMBM202 CORE VII: MEDICAL MICROBIOLOGY SEM		MESTE	R II				
Course	Course Objectives:						
The cou	rse aims						
•]	• To understand the basic principles and the etiological agents responsible						
	for the in	fectious diseases.					
•]	To foster a	a student's ability to understand the infections, immu	ne respo	onse			
	and path	ogenic mechanisms.					
Credit	s: 05	Te	otal Hou	ırs: 50			
UNIT		CONTENTS	Hrs	CO			
	Morpho	logy, cultural characteristics, pathogenesis,					
	laborato	ry diagnosis, control: <i>Staphylococcus aureus</i> ,					
Ι	Streptoco	occus pneumoniae, Neisseria gonorrhoea, Corynebacterium	10	CO1			
	diphtheri	ae, Mycobacterium tuberculosis, Clostridium tetani and					
	Bacillus i	anthracis.					
	Morpho	logy, cultural characteristics, pathogenesis,					
	laborato	ry diagnosis, control: Escherichia coli, Klebsiella sp.,					
II	Proteus	sp., Salmonella sp., Shigella sp., Vibrio cholerae,	10	CO2			
	Pseudom	onas aeruginosa, Haemophilus influenza, Listeria					
	monocyte	ogenes, Rickettsia and Chlamydiae trachomatis.					
	Superfic	ial mycosis -Tinea, Piedra. Cutaneous mycosis -					
	Dermato	ophytoses, Systemic mycosis - Blastomycosis and					
III	Histopla	smosis. Subcutaneous mycosis -Sporotrichosis,	10	CO3			
	Opportu	inistic mycosis - <i>Candida, Cryptococcus</i> and					
	Aspergill	us. Antifungal agents.					
	Introduc	ction to Medical Virology - Morphology,					
W	pathoge	nesis, clinical manifestation and diagnosis of viruses:	10	CO4			
	Ebola,	Influenza, Hepatitis A and B, Rabies, Human	10	001			
	Papilom	a Virus, Herpes virus and HIV.					
V	Introduc	ction to Medical Parasitology - Morphology, life	10	CO5			

cycle, pathogenesis, clinical manifestation and diagnosis of						
parasites:	Ancyclostor	na duoi	lenale,	Ascaris	lumbr	icoides,
Entamoeba	histolytica,	Giardia	lamblia,	Plasom	odium	vivax,
Taenia solium and Wuchereria bancrofti.						

Text Book:

- 1.Ananthanarayan, R. and Jayaram Panicker, C.K. 2005.Text Book ofMicrobiology. [Seventh Edition]. Orient Longman Pvt. Ltd., Chennai.
- Murray, M.R, Rosenthal, K.S, and Michael A Pfaller. 2005. Medical Microbiology. Elsevier, Pennsylvania, USA.
- Subhash Chandra Parija, 2004. Text book of Medical Parasitology Protozoology and Helminthology. 2nd edition, All India Publishers and Distributors, Medical book publisher, New Delhi.
- 4. *Jegadish Chander*, 1996. **A Text Book of Medical Mycology**. Interprint, New Delhi.

Reference Books:

- David Greenwood, Richard C.B. Slalk and John F. Peutherer. 1998. Medical Microbiology. [Fifth Edition]. Churchill Livingston, New York.
- Slimeld, L.A., and Rodgers, A.T. 1999. Essentials of Diagnostic Microbiology.
 Delmar Publications, USA.
- Dimmock, K.J. and Primrose, S.B. 1994. Introduction to Modern Virology.
 [Fourth Edition]. Blackwell Science Ltd., UK.
- 4. *Lewy, J.A., H.C Fraenled and R.A. Owens.* 1994. **Virology.** [Third Edition]. Prentice Hall, New Jersey, USA.
- 5. *Rajesh Karyakarte and Ajith Damle.* 2005. **Medical Parasitology**, Books and Allied (P) Ltd.
- *Chakraborthy, P.* 1995. A Textbook Microbiology, New Central Book Agency Pvt. Ltd., Calcutta.

After completion of the course, the students' will be able to

CO1	Analyze and diagnose the infections caused by Gram positive pathogens
CO2	Analyze and diagnose the infections caused by Gram negative pathogens
CO3	Create awareness against mycosis.
CO4	Evaluate the prognosis of dreadful viral diseases
CO5	Create awareness for parasitical infestation

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	Н	Н
CO2	Н	Н	М	Н	Н
CO3	М	Н	Н	Н	М
CO4	М	Н	Н	Н	Н
CO5	М	Н	Н	Н	Н

18PMB	SMEL201 ELECTIVE I: ENVIRONMENTAL MICROBI	OLOGY	SI	EMESTI	ER II	
Course						
The cou	urse aims					
• To import the significant processes involving in environmental						
	microbiology	iving in c		mienta	1	
	To understand bioromodiation process and bio	fuol product	ion			
Cradita			т. Т	otal Ua	1170.50	
			1		$\frac{1}{2}$	
UNII	CONTENTS			HIS	CO	
	Ecological Principles- ecosystem-types	of ecosyste	ms-			
Ι	dynamics of ecosystem- culturable and	non-cultura	able	10	CO1	
	bacteria- conventional and molecular method	ods of study	ving			
	microbial diversity.					
	Aero-microbiology - Aerosol- droplet nucle	i – Enumera	ition			
	of bacteria from air - Air sampling devices	- Air sanitat	ion-			
п	Air borne diseases and their control me	asures. Aqu	ıatic	10	CO^{2}	
	Microbiology - Potability of water qual	ity – Indic	ator	10	02	
	organisms - MPN index - eutrophication	n - waterb	orne			
	diseases and their control measures.					
	Sewage Microbiology - chemical an	d biochen	nical			
	characteristics of sewage - Biological or	xygen dema	and-			
III	Chemical oxygen demand - Sewage treatment	nent – Phys	ical,	10	CO3	
	chemical and biological (trickling filter, activ	ated sludge	and			
	oxidation pond) treatment - waste disposal.					
	Role of microbes in environment -	Bioremedia	tion-			
IV	bioremediation-types and its applications- bi	ioremediatio	n of	10	CO4	
	hazardous waste and metalsbiodegradatio	n of paper	, oil			

	and pesticide-bio-deterioration of leather and textiles -				
	Bioleaching of ores- phytoremediation.				
	Microbial conversion of solid waste to food- mushroom-				
N7	SCP- Bio-fuel - biofuel production- bioethanol, biogas,	10	COF		
v	hydrogen and algal fuel - concepts of sustainable energy	10	05		
	development. Microbial composting.				
Text Bo	ooks:		I		
1.	Atlas, R.M and Bartha R. 1980. Microbial Ecology: Funda	amental	ls and		
	applications. Fourth Edition, An imprint of Adiision Wesley Longman Inc.				
2.	Vijaya Ramesh, K (2004). Environmental Microbiology. 1st Edition, MJP				
	Publishers (A unit of Tamil Nadu Book house), Chennai.				
Referen	eference Books:				
1.	Mithell R. 1974. Introduction to Environmental Microbiology.	Prantic	e Hall.		
	Inc., Englewood Cliffs, New Jersey.				
2.	Daniel J. C. 1999. Environment Aspects of Microbiology. 1st I	Edition,	Bright		
	sun Publications, Chennai.				
3.	Raina, M. M, Ian L. P and Charles P G. 2000. Environmental	Microbi	iology.		
	Academic Press, USA.				

After completion of the course, the students' will be able to

CO1	Recall the existence of living organisms and communities
CO2	Evaluate air quality, air sanitation and control air borne diseases.
CO3	Create awareness about proper disposal and recycling of waste water.
CO4	Develop remediation for control environmental pollution using
001	microorganisms.
CO5	Assess commercial application of microbial products.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	М	М
CO2	М	Н	Н	Н	Н
CO3	М	Н	Н	Н	Н
CO4	М	М	Н	Н	Н
CO5	Н	Н	Н	Н	Н

MAPPING

18PMBMEL202		ELECTIVE I: CELL BIOLOGY	SEMEST	ER II
Course	Objectives	:		
The cou	irse aims			
• To a	scertain the	e cellular level organization and its functions		
• To u	Inderstand	about the activation, regulation of cellular metabo	lism.	
Credits	: 04		Total Ho	urs: 50
UNIT		CONTENTS	Hrs	СО
	Structure	and organization of cytoskeleton - microfilament	s,	
	microtubu	lles and intermediate filament. Structure an	d	
Ι	functions	of nucleus, mitochondria, chloroplast	s, 10	CO1
	endoplasn	nic reticulum and golgi apparatus- prote	in	
	trafficking			
	Cell cycle	- Events and regulation in cell cycle. Microtubule	es	
II	and mitos	is. Cell movements. Intracellular transport and th	ne 10	CO2
	role of kin	esin and dynein.		
	Ca++ dep	pendent and independent cell-cell adhesion. Ce	211	
	junctions	and adhesion molecules, mitosis, meiosis, role o	of	
111	cyclins an	d cyclin dependent kinases, regulation of Cdk	- 10	CO3
	cyclin acti	vity.		
	Signal tra	nsduction- G Protein couple receptors (GPCR	.),	
TT 7	second me	essenger, role of cAMP and cGMP, steroid/peptic	le	604
IV	hormone	regulation, tissue specific regulation - protein	in 10	CO4
	folding- m	olecular chaperones.		
	Cell divisi	on regulation and cancer. Role of protein kinase	s,	
V	Programm	ned cell death (PCD) - Autophagy and apoptosi	s. 10	CO5
	Geno toxic	city assays.		

Text Boo	Text Book:					
1.	Ajoy Paul. 2011. Text Book of Cell and Molecular Biology, Books and Allied					
	Ltd., New Delhi.					

Reference Books:						
1.	Lodish, H., Berk A., Kaiser C. A., Krieger M., Scott M.P., Bretscher A., Ploegh H					
	and Matsudaira P. 2008. Molecular Cell Biology, [Sixth Edition]. Freeman, W.					
	H. and Co.					
2.	<i>Geoffrey, M. Cooper and Hausman, R.E.</i> 2007. The cell – A Molecular Approach.					
	[Fourth Edition]. ASM Press, Washington, D.C.					
3.	Sadava, D.E. 2004. Cell Biology: Organelle Structure and Function. Reprint,					
	[First Edition]. Panima Publishing Corp., India.					

After completion of the course, the students' will be able to

CO1	Recall about structural components and internal organelles.
CO2	Assess cell cycle and its regulations.
CO3	Analyze cell cycle mechanisms.
CO4	Apply cell signal transduction for design drugs.
CO5	Develop drugs for cancer therapy.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	М	.M	М	М
CO2	М	М	М	М	М
CO3	М	Н	Н	Н	М
CO4	М	М	Н	Н	Н
CO5	М	М	Н	Н	Н
18PMBMP201 Course Objecti	CORE PRACTICAL II (Soil and Agricultural Microbiology, Medical Microbiology, Environmental Microbiology ar Cell biology) ves:	CORE PRACTICAL II (Soil and Agricultural Microbiology, Medical SEMESTI /icrobiology, Environmental Microbiology and Cell biology)			
------------------------------	---	--	---------------		
The course aim					
• To under	stand and identify unknown pathogens.				
• To study	plant growth promoting microorganisms.	Т-			
Credits: 04		10	tal Hours: 60		
Experiment	CONTENTS	Hrs	СО		
1.	Collection and transportation of clinical specimens.	3	CO1		
2.	Isolation and Identification of bacteria causing urinary tract infection.	2	CO1		
3.	Isolation and Identification of bacterial pathogens causing throat infection.	5	CO1		
4.	Identification of unknown pathogen from pus from infected wound.	pus 5 CO1			
5.	Identification of unknown pathogen from blood sample.	5	CO1		
6.	Identification of unknown pathogen from diarrheic stool.	5	CO1		
7.	Isolation of <i>Rhizobium</i> from root nodules.	5	CO2		
8.	Observation of VAM fungi from roots.	5	CO2		
9.	Biological Oxygen Demand (BOD).	5	CO3		
10.	Chemical Oxygen Demand (COD).	2	CO3		
11.	MPN technique.	3	CO3		
12.	Observation of mitosis from onion root tips.	5	CO4		
13.	Observation of barr bodies from buccal smear.	5	CO1		

Reference Bool	k:
	James G. Cappucino and Sherman Natalie 2005. Microbiology - A
1.	Laboratory Manual. [Seventh edition]. Pearson education India, New
	Delhi.

CO1	Apply the diagnosis knowledge to detect the unknown pathogens from
	clinical samples.
CO2	Develop sustainable agriculture through study of agriculturally important
	microorganisms.
CO3	Evaluate the purity of the water and analyze the pollutants present in
	water bodies.
CO4	Assess the different molecular phases in eukaryotic cells.

18PBCMBI201		INTERDISCIPLINARY COURSE I:	SEMESTER		ср н
		DIAGNOSTIC BIOCHEMISTRY	SEIV.	16511	
Course	Objective	5:			
The cou	arse aims				
•	To enable tl	ne students to develop practical and interpretative ski	lls to	contr	ribute
(effectively i	n diagnostic haematology and clinical biochemistry			
Credits	s: 02	- -	Total	l Hou	rs: 40
UNIT		CONTENTS		Hrs	CO
	Clinical	Laboratory: Introduction, types and set-up. Ba	sic		
	laboratory	safety, hazards in the clinical laboratory, safety w	ith		
	chemical/	reagents, first aid in laboratory accidents. SI uni	its.		
Ι	Universal	work precautions for lab personnels. Medie	cal	8	CO1
	laboratorio	es in the developing countries. Fundamental chemistr	y -		
	Indicators	, solutes, solvents and solutions. Percentage, molar a	nd		
	normal so	lution with simple biochemical calculations			
	Clinical H	Iaematology: Ways of obtaining blood, Anticoagulan	nts,		
	Blood coll	ection system, estimation of haemoglobin- Sahli's a	nd		
	Cyanmeth	aemoglobin method, packed cell volume a	nd		
II	erythrocyt	e sedimentation rate, blood cell counts - WBC and RB	BC.	8	CO2
	Blood film	n examination, stain preparation and staining, rap	oid		
	diagnostic	s - automation in haematology, bleeding time, clotti	ng		
	time				
	Urine an	nalysis and Stool examination: Physicochemic	cal		
	characteris	stics of urine, preservation of specimen, gro	OSS		
III	examinatio	on of urine and chemical examination of urine-tests	for	8	CO3
	glucose, 1	oroteins, aminoacids, ketone bodies, bile salts, b	oile		
	pigments.	Stool examination – Specimen collection, test for occ	ult		

	blood, microscopic examination of stool		
IV	Clinical Chemistry and Enzymology: Diabetes Mellitus - Introduction, screening tests, diagnostic tests - insulin tolerance test. Estimation of glucose in blood, GTT, and glycosylated haemoglobin. Estimation and interpretation of cholesterol, urea, creatinine and protein in biological samples. Enzymology – Role of Alkaline and Acid phosphatase in diagnosis of diseases	8	CO4
V	Organ function tests: Liver function test: Functions of the Liver, Tests based on abnormalities of bile pigments (Jaundice). Renal Function: Functions of the kidney, clearance test (Creatinine and urea), dilution test, phenol red test, principles of precise tests of renal function – Glomerular filtration rate, renal plasma flow and maximal tubular capacity	8	CO5
Text B	ooks:		
1.	<i>Ramnik Sood.</i> 2006. Medical Laboratory Technology. [First Edit: Brother's Medical Publishers Ltd., New Delhi	ion]. Ja	aypee
2.	Kanai L. Mukherjee. 2005. Medical Laboratory Technology, Volu McGraw-Hill Publishing Co. New Delhi	ıme I.	Tata

CO1	Practice the safe laboratory processes and reagent preparations
CO2	Explain the general concepts of specimen handling methods and analysis of
001	blood cells in clinical labs
CO3	Recite the handling and analytical procedures of urine and stool samples
CO4	Describe the general concepts in diagnosis of diabetes mellitus
CO5	Perform various laboratory procedures to assess the functional status of the
05	organs

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	М	М
CO2	Н	Н	М	М	М
CO3	М	М	L	L	L
CO4	М	М	L	L	L
CO5	Н	Н	Н	Н	Н

MAPPING

18PB	CMRIP201	INTERDISCIPLINARY COURSE PRACTICAL I: DIACNOSTIC	SEMEST	FR II
101 DCMD11 201		BIOCHEMISTRY	OLIVILOI	
Course	e Objectives:			
The co	urse aims			
•	To enable the	e students to develop practical knowledge in handl	ing and f	testing
	the biologica	l samples		
Credit	s: 02		Total H	lours: 24
S.No.		EXPERIMENT	Hrs	CO
I. Clin	ical haemato	logy		
1.	Enumeratio	n of WBC and RBC	3	CO1
2.	Estimation	of haemoglobin (Sahli's method)	3	CO1
3.	Erythrocyte sedimentation rate (Westergren's method)3CO1			
II. Blo	od analysis			
4.	Estimation	of glucose in blood (Nelson Somogyi's method).	3	CO2
5.	Estimation	of urea in blood (DAM method).	3	CO2
6.	Estimation	of creatinine in blood (Jaffe's method).	3	CO2
III. Ur	ine analysis			
7.	Estimation of	of creatinine in urine (Jaffe's method).	3	CO2
8.	Qualitative analysis of normal and abnormal constituents in		n 3	CO3
D.C				
Kefere	nce Books:			
1.	Harold Varle	y. 1980. Practical Biochemistry. Volume I & II. [Fi	itth Editi	on]. CBS
	Publishers,	New Delhi		
COUR	SE OUTCOI	VIES (CO)		

CO1	Perform blood cell analysis procedures
CO2	Estimate the presence of metabolites in blood and urine
CO3	Use the tests to identify normal and abnormal constituents in urine by
	qualitative analysis

18PBTMBI201 IDC I: PLANT TISSUE CULTURE TECHNOLOGY		SEMESTER II			
Course Obj	Course Objectives:				
The course	aims				
• 10 unde	erstand the basic techniques in plant tissue culture.	Total H	ours 40		
UNIT	CONTENTS	Hrs			
	CONTENTS	1115			
I	Introduction to Plant cells, Types of plant cells,				
	Principles of plant tissue culture, Tissue culture media,	7	CO1		
	Growth regulators and Sterilization techniques.				
II	Callus and suspension culture, Micropropagation,				
	Ieristem culture, Somatic embryogenesis, Protoplast8CO2				
	isolation, Fusion of protoplast, Somaclonal variations.				
III	Agrobacterium mediated gene transfer, Agrobacterium				
	based vectors, direct gene transfer methods -	9	CO3		
	electroporation, microinjection, particle bombardment.				
IV	Genetic engineering for quality improvement-Protein,				
	lipids, carbohydrates, and vitamins, Production of				
	resistant plants - Herbicide resistance, Insect resistance	10	CO4		
	(Bt approach), Abiotic stress tolerance plant production				
	- Drought, temperature and salt.				
V	Secondary metabolites from plants - Alkaloids, flavonoids				
	and phenolic compounds, Germplasm conservation.	6	CO5		

Text Book:		
1.	Bhojwani, S.S., and Razdan, M.K. 2008. Plant Tissue Culture – Theory	
	and Practice. Elsevier Publishers, New Delhi.	

Referenc	e Books:
1.	Chawla, H.S. 1998. Biotechnology in Crop Improvement. International
	Book Distribution Co., New Delhi.
2	Hopkins, W.G. and Hiiner, N.P.A. 2004. Introduction to Plant Physiology.
۷.	[Third Edition]. John Wiley and Sons, New Jersey, USA.
3.	Jain, V.K. 2013. Fundamentals of Plant Physiology. [Fifth Edition]. S. Chand
	and Company, NewYork.
4.	<i>Trivedi, P.C.</i> 2004. Advances in Plant Physiology. [Third Edition].
	I.K. International Publications Pvt Ltd., New Delhi.

After the completion of the course the student will be able to

CO1	Simplify the types of plant cells and will able to utilize various sterilization techniques
CO2	Utilize the micro propagation and isolation of plant tissue
CO3	Analyze the techniques for Transfer gene by biological and physical method
CO4	Contrast the benefits and develop the genetically modified crops
CO5	Demonstrate the Extraction and identification of secondary metabolites

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	М	М	Н
CO2	L	L	М	М	Н
CO3	L	М	М	М	Н
CO4	М	М	М	Н	Н
CO5	Н	Н	Н	Н	Н

18PMBBTIP201		INER DISCIPLINARY COURSE PRACTICAL I: PLANT TISSUE CULTURE TECHNOLOGY	S	EMESTER II	
Course Obje	ctive	25:	l		
The course at	ims				
 To get 	han	ds on experience on Plant tissue cultur e			
Credits: 02			Tota	al Hours:30	
Experiment		CONTENTS	Hrs	CO	
1.	Me	dia preparation.	3	CO1	
2.	Ho	rmone stock solution preparation	2	CO1	
3.	Cal	lus induction.	5	CO1	
4.	Mic	cropropagation.	5	CO2	
5.	Pro	toplast isolation.	5	CO2	
6.	Syn	thetic seed preparation	5	CO2	
Reference Bo	ooks			i	
1	Aneja, K.R. 2003. Experiments in Microbiology, Plant pathology and				
1.	Biotechnology. [Fourth Edition]. New age international.				
2	Bho	jwani, S.S. and Razdan, M.K. 2008. Plant Tis	sue Cu	ulture – Theory	
۷.	and	l Practice. Elsevier Publishers, New Delhi.			

CO1	Prepare media for plant tissue culture.
CO2	Cultivate the plant tissues/cells.
CO3	Synthesis seeds and hybridoma cells.

18PVE201		VALUE EDUCATION: HUMAN RIGHTS	S	EMEST	TER II
Course Objectives					
The cou	ırse aim	S			
•]	To make	the students to understand the concepts of human right	ts.		
Credits	: 02		,	Total F	Iours: 25
UNIT		CONTENTS		Hrs	CO
	Huma	n Rights: Definition - Historical Evolution - Classificat	tion		
	of Ri	ghts - Universal Declaration of Human Rights	s -		
т	Interna	ational Covenants on Economic and Social Right	ts -	5	CO1
1	Consti	tutional Provision for Human Rights - Fundame	ntal	5	COI
	Rights	- Directive Principles of the State Policy - Inc	lian		
	Consti	tution.			
	Civil a	and Political Rights: Right to Work - Right to Perso	onal		CO2
	Freedo	om - Right to Freedom of Expression - Right to Proper	ty -		
	Right	to Education - Right to Equality-Right to Religion - Ri	ight		
тт	to For	n Associations and Unions - Right to Movement-Righ	nt to	E	
11	Family	- Right to Contract - Right to Constitutional Remed	lies-	5	
	Right	to Vote and Contest in Elections - Right to Hold Pu	blic		
	Offices	-Right to Petition-Right to Information - Right to Criti	cise		
	the Go	vernment-Right to Democratic Governance.			
	Econo	mic Rights: Right to Work - Right to Adequate Wag	jes -		
III	Right	to Reasonable Hours of Work - Right to Fair Work	king		
	Condi	tions - Right to Self Government in Industry - Custor	mer	5	CO3
	Rights	- Social and Cultural Rights - Right to Life - Right	t to		
	Clean	Environment.			

		Women's Rights: Right to Inheritance - Right to Marriage -			
		Divorce and Remarry -Right to Adoption - Right to Education -			
		Right to Employment and Career. Advancement - Rights	5	CO4	
	7	Relating to Dowry - Right for Equality - Right for Safe Working			
	v	Conditions - Children's Rights - Right to Protection and Care -			
		Right to Education - Issues Related with Infanticide - Street			
		Children - Child Labour-Bonded Labour - Refugees Rights -			
		Minority Rights - Dalit Rights-Tribal Rights-Nomads Rights.			
		Human Rights Violation: International, National, Regional			
		Level Organizations to Protect Human Rights - UNO - National			
		Commission for Human Rights - State Commissions - Non			
V	7	Governmental Organizations and Human Rights - Amnesty	5	CO5	
		Terrorism and Human Rights - Emergency and Human Rights -			
		Judiciary and Human Rights - Media and Human Rights - Police			
		and Human Rights.			
Ref	Reference Books:				
1	1 Paul Singh. Human Rights and Legal System. Himalaya Publishing House,				
	New Delhi.				

Understand the core principles of human rights philosophy
Know the importance and functions of human rights commission
Apply their rights for democracy, human rights and gender equality
Know the rights from the Governance, economic and social development through
various Acts
Understand the right to information Act, rights for women, children, Nomads,
refugees and various sector of people in our country

SEMESTER II

Course Objectives:				
The course aims				
	• To enhance employability skills and to develop career compete	ncy.		
	Т	otal Ho	urs: 15	
UNIT	CONTENTS	Hrs	CO	
Ι	Interview Skills – Types of Interview – Groundwork before Interview – Abide by the dress code – Importance of Body language in Interviews – Tell Us about yourself – Do's and Don'ts of an interview – Concluding an Interview – A Mock Interview.	3	CO1	
Π	Resume Preparation – Difference between a Resume and CV – The main body of Resume – The Career objective in Resume – A Fresher's Resume – Antiquity of Soft Skills – Classification of Soft Skills – Personality Analysis – Interpersonal Skills.	3	CO2	
III	Body Language – Emotion displayed by Body Language – Group Discussion – Group Discussion types – Guidelines Do's and Don'ts during a Group Discussion – Concluding the Discussion – The technique of Summing Up.	3	CO3	
IV	Speaking Skills – Effective Speaking Guidelines – Reading Skills – Types of Reading Skills – Barriers to Speed Reading – Listening Skills – Stages of Listening – Types of Listening – Barriers to Listening – Beware of Pitfalls – Avoid Errors : Indianisms in English – Most common errors in the world – Similar but not Quite the same – Words that are Singular or Couple.	3	CO4	
V	Avoid Pitfalls: of Beware Self-improvement - Facilitating Laboratory: Language Techniques and Concepts E-learning	3	CO5	
Text Book:				
1.	Barun K. Mitra. 2011. Personality Development and Soft sl	kills. [S	Second	
	Edition]. Oxford University Press, New Delhi.			

CAREER COMPETENCY SKILLS - II

18PLS201

Reference Book:			
1.	S.P. Dhanavel. 2015, English and Soft Skills. [Second Edition]. Orient Black		
	Swan Publishers, New Delhi.		

CO1	Understand the types of Interviews, Dress Code and Styles
CO2	Develop Resume content and structures.
CO3	Improve body language skills.
CO4	Know how to represent self through communication.
CO5	Attain the different level of Learning Skills.

18PME	3M301 CORE VIII: GENETIC ENGINEERING	SEMES	STER III
Course	Objectives:		
The cou	irse aims		
• To	learn the basics of recombinant DNA technology.		
• To	acquire an idea about cloning mechanisms.		
Credits: 05 Total I			ours: 50
UNIT	CONTENTS	Hrs	CO
	Introduction to Genetic Engineering: Definition, Historical		
	perspectives. Enzymes in rDNA technology - Restriction		
	enzymes - types - nomenclature. DNA ligase. DNA		
Ι	modifying enzymes – alkaline phosphatase and	10	CO1
	polynucleotide kinase- Polymerases and types- Conversion		
	of blunt ended molecules to sticky ended- linkers – adopters		
	– homopolymer tailing.		
	Cloning Vectors: Cloning vectors: Bacterial Plasmids-		
	pBR322 & pUC vectors, Bacteriophage vectors λ , M13,		
II	Hybrid vectors- cosmid, phagemid. Yeast vectors- YEP,	10	CO2
	YRP, YIP & YAC. Shuttle vectors. Expression vectors for		
	expressing eukaryotic gene.		
	Cloning Strategies: Construction of cDNA and genomic		
ш	libraries. Gene transfer methods- transformation,	10	CO3
	electroporation, particle bombardment and microinjection.	10	200
	Screening and selection of clones.		
	Transgenic Animals and Plants: Animal vectors - SV 40,		
IV	Retroviral vector. Production and applications of transgenic	10	CO4
IV	mice. Gene transfer to plants- Callus culture, Agrobacterium		01
	mediated transformation: Crown gall disease, Ti plasmids,		

	T-DNA transfer, Ti plasmid derivatives- co-integrate vectors		
	and binary vectors.		
	rDNA technology: Blotting techniques - Southern,		
	Northern and Western blotting. PCR amplification and its		
17	application.DNA sequencing methods - dideoxy, chemical	10	
V	and Next Generation Sequencing (NGS), RFLP, RAPD,	10	05
	Microarray. Applications of Genetic Engineering in		
	Medicine and Agriculture.		
Text Bo	ooks:		I
1.	Brown, T.A. 1995.Gene Cloning-An Introduction. [Third	Edition].
	Chapmanand Hall, UK.		
	Old, R.M. and Primrose, S.B. 1995. Principles of Gene Manipula	ation. [S	Sixth
2.	Edition]. Blackwell Scientific Publication, London.		
Referen	nce Books:		
1.	Glick, B.K. and Pasternik, J.J. 1998. Molecular Biotechnology	. Princi	ples and
	applications of recombinant DNA. [Second Edition]. ASM Pr	ess, Wa	shington
	DC, USA.		
2.	Winnacker, E.L. 1987. From Genes to Clones. Introduction to G	ene tec	hnology.
	[First Edition]. Panima Publishing Corporation, New Delhi.		

COURSE OUTCOMES (CO) After completion of the course, the students' will be able to

CO1	Recall the basics and importance of enzymes in molecular research.		
CO2	Apply cloning for developing novel recombinant products.		
CO3	Develop transformants for production of various pharmacologically important		
	products.		
CO4	Apply gene transfer technology for controlling plant diseases.		
CO5	Demonstrate sequencing method for bacterial identification.		

MAPPING

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	М	М	М	М	Н
CO2	М	Н	Н	Н	Н
CO3	М	Н	Н	Н	Н
CO4	Н	Н	Н	Н	Н
CO5	М	М	Н	Н	Н

18PMBM302		CORE IX: BIOSTATISTICS AND RESEARCH	SEMES	TED III
101 101	D1 v1 302	METHODOLOGY	5ENIE5	
Course	Course Objectives:			
The co	urse aim	5		
• '	To learn	the strategies of research field and also to provid	le knowl	edge to
1	understa	nd the role of statistics in research		
Credits	s: 0 4		Total H	ours: 50
UNIT		CONTENTS	Hrs	CO
	Statisti	cs: Introduction - Definition of Statistics - Functions		
	of Statis	stics - Applications and Limitations of Statistics.		
	Collect	ion of data: Primary and Secondary data – Methods		
	of colle	cting primary data - Sources of secondary data.		
	Classif	ication and Tabulation of data: Types of		
т	classific	ration – Tabulation of data – Parts of a table - Types of	10	CO1
1	tables.		10	COI
	Diagra	mmatic and Graphical Representation: Types of		
	diagran	ns - Graphs - Graphs of frequency distributions.		
	Measu	res of Central Tendency: Arithmetic Mean (except		
	weighte	ed mean and corrected values) - Median - Mode -		
	Merits a	and demerits. (Volume 1: Chapters 1, 3, 5 6 and 7)		
	Measu	es of Dispersion: Mean deviation – Standard		
	deviatio	on – Coefficient of variation.		
	Correla	tion Analysis: Types of correlation - Methods of		
II	Correla	tion - Karl Pearson's Coefficient - Rank correlation	10	CO2
	coeffici	ent.		
	Regress	sion Analysis: Regression lines (except graphing) -		
	Regress	ion equations. (Volume 1: Chapters 8, 10 and 11)		

	Test of Hypothesis: Population - Sample - Procedure of				
	testing hypothesis - Types of errors - Standard error - t test -				
III	Chi-square test of independence of attributes.	10	CO3		
	Analysis of Variance: One way classification – Two way				
	classification. (Volume 2: Chapter 3, 4 and 5)				
	Thesis Writing: Planning and Classification, Components of				
	research report, Essential steps in research. Problem				
137	Identification & Formulation, Research Question,	10	CO1		
IV	Hypothesis: Qualities of a good Hypothesis, Null	10	04		
	Hypothesis & Alternative Hypothesis. Experimental design.				
	Literature collection – and its importance.				
	Preparing proposal for a research project: Scientific				
	Research report writing- writing Introduction, Review of				
	literature, Materials and methods, Results, Table, Figures,				
V	Discussion, Citing and listing references. Format of a Thesis.	10	CO5		
	Preparation of manuscript for publication. Scientific				
	information-Introduction, Writing proposals, scientific				
	papers and figures. Plagiarism.				
Text B	ooks:				
1	Gupta, S.P. 2006. Statistical Methods. Sultan Chand and Sons I	Publisher	s, New		
1.	Delhi. (UNIT I-III)				
2.	<i>Gurumani, N.</i> 2006. Research Methodology. MJP Publishers. (UNIT IV).				
2	<i>Gurumani</i> , N. 2016. Scientific thesis writing and paper presentation. MJP				
3.	Publishers. (UNIT V)				

Reference Books:					
1	Gurumani, N. 2008. An Introduction to Biostatistics [second revised				
1.	edition]. MJP Publishers Chennai.				
	Antonisamy, B., Solomon Christopher and Prasanna Samuel. 2010.				
2.	Biostatistics: Principles and Practice. Tata McGraw Hill Education Private				
	Limited. New Delhi.				
2	Padmini E. 2007. Biochemical Calculations & Biostatistics. [First Edition].				
э.	Books and Allied (P) Ltd., Kolkata.				
	Kothari, C.R. 1990. Research Methodology-Methods and Techniques.				
4.	NewAge Publications. New Delhi				

After completion of the course, the students' will be able to

CO 1	Learn the importance of statistics and Understand the concepts of measures of
	central tendency and measures of dispersion
CO 2	Gain knowledge on correlation and regression analyses
CO 3	Test the research statements through ANOVA.
CO 4	Select the appropriate procedure for carrying out their research work
CO 5	Understand the concepts in writing thesis, proposal and result interpretation

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	Н	М	М
CO2	Н	М	Н	М	М
CO3	М	Н	Н	М	М
CO4	Н	Н	Н	Н	Н
CO5	М	М	Н	Н	Н

18PMBMEL301		ELECTIVE II: BIOINFORMATICS, BIOETHICS AND IPR	SEMEST	ER III	
Course	Objectives				
The cour	rse aims				
• T	o learn abo	out the basics and scope of bioinformatics.			
• T	o familiai	rize the prediction of various biological str	ructures	through	
bi	ioinformati	ics tool.			
• T	o know ab	out the basics of intellectual property rights and bio	oethics.		
Credits:	05		Fotal Hou	rs: 50	
UNIT		CONTENTS	Hrs	CO	
	Bioinforr	natics: Definition and Scope. Biological Databases	;		
	– uses. S	Sequence Databases-Nucleic acid (NCBI, EMBL,	,		
I	DDBJ), Pi	10	CO1		
	PDB, CATH, SCOP, Specialized databases - KEGG, Pub				
	Med.				
	Sequence	e analysis: Local Alignment, Global alignment-			
	BLAST,	Multiple sequence alignment - ClustalW	10	COD	
11	Phylogen	etic analysis- WPGMA, UPGMA methods. Human		02	
	Genome l	Project.			
	Secondar	y structure prediction: GOR, Chau-Fasman	L		
III	method,	ORF finder, restriction site analysis, molecular	10	CO3	
	visualizat	ion tool - Rasmol. Molecular Docking.			
	Biosafety	and Bioethics: Definition - DBT - Guidelines or	1 I		
	Biosafety	in conducting research in Biology/Biotechnology			
IV	Bioethics	- Definition - Animal ethics - Norms in India	- 10	CO1	
	Licensing	of animal house. Human ethics, Ethics of	f	04	
	Research.	Biosafety levels.			

	Intellectual Property Rights: WTO, GATT and TRIPS.					
• 7	Forms of IPR. Patents, copy rights, trade secrets. Patenting					
v	of biological materials. Patents of biotechnology in India.	of biological materials. Patents of biotechnology in India.				
	Plant breeders right. ICMR Guidelines.					
Text Boo	oks:					
1	Rastogi, S.C., N.Mendiratta and P.Rsatogi. Bioinformatics	- Metho	ds and			
1.	applications. Third edition. PHI Learning Pvt Ltd, New Del	applications. Third edition. PHI Learning Pvt Ltd, New Delhi.				
	Andreas, Baxevanis and Francis Ouellette. Bioinformatics- A practical guide					
2.	to the analysis of genes & protein [Second edition].					
3.	Shaleesha A. Stanley. 2008. Bioethics. Wisdom educational service, Chennai.					
Referen	nce Books:					
1	David H Mount. Bioinformatics. 2005. Second Edn. CBS I	Publisher	rs, New			
1.	Delhi.					
	Baruch A Brody and Tristram Engelhardt H. 1987. Bioethics	: Readiı	ngs and			
2.	Cases. Pearson education, UK.					
2	Satheesh, M.K. 2008. Bioethics and Biosafety. IK International	tional P	vt. Ltd.,			
Э.	New Delhi.					

CO1	Recall the basics and applications of bioinformatics tools in molecular research.
CO2	Apply the sequence analysis for identification of microbes.
CO3	Develop the skill for protein characterization.
CO4	Demonstrate biosafety and ethics for the future sustainable development.
CO5	Apply intellectual property right for novel products.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	М	М
CO2	М	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н
CO4	М	М	Н	Н	Н
CO5	М	Н	Н	Н	Н

MAPPING

18PMBMEL302		ELECTIVE II: PHARMACEUTICAL MICROBIOLOGY	SEMES	ΓER III		
Course Objectives:						
The course	The course sime					
	loomo ob	out the supplicity antimicropial agents and its m	achaniam	of		
• 10 acti	on.	out the synthetic antimicrobial agents and its in	echanism	01		
• To	underst	and microbial contamination and spoilage	of vario	ous		
pha	rmaceut	ical products.				
• To s	study the	e quality assurance and validation of pharmaceutica	l Industry	7.		
Credits: 05	5	·	Fotal Hou	ırs: 50		
UNIT		CONTENTS	Hrs	CO		
	Antibi	otics: Definition - Classification of antibiotics -				
	Mecha	nism of action of antibiotics - Inhibitors of cell				
Ι	wall s	synthesis, nucleic acid and protein synthesis-	12	CO1		
	Antim	icrobial resistance. Scope and recent				
	develo	pments of pharmaceutical microbiology.				
	Indus	rial production of microbial products:	+			
II	Antibi	08	CO2			
	influer	nza, BCG.				
	Microb	ial contamination and spoilage of				
	pharma	aceutical products: sterile injectables -				
	Intrave	nous infusions and total parenteral nutrition				
III	(TPNI)	non injectables_non injectable water and	10	CO3		
	harmor	dialucia colutions on the line propagations and				
	naemoo					
	implan	IS.	_			
	Pharma	aceutical Drug Analysis: Biosensors and				
IV	applica	tions in Pharmaceuticals; Macromolecular,	10	CO4		
	cellular	and synthetic drug carriers. Assay of steroids.				
	Method	ls of preservation of pharmaceutical products.				

V	Quality Assurance and Validation: Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP) in Pharmaceutical Industry. Toxicology test of antimicrobial drugs – Acute toxic category and Fixed dose procedure. Laboratory evaluation and quality testing of antimicrobial drugs.	10	CO5
Text Book	:		
1.	Hugoand Russell. 2004. Pharmaceutical Microbiology. [9] Wiley- Blackwell Publishers, UK.	Seventh I	Edition].
Reference	e Books:		
1.	<i>Purohit,S.S., Saluja,A.K. and Kakrani,H.N.</i> 2003. Pharmaceut Microbiology . Agrobios, New Delhi.	ical	
2.	Lansing M Prescott, John P Harley and Donald A Klein. 2010. [Eighth Edition]. Mc Graw Hill, NewYork.	Microbio	logy.

	Recall the basics and working mechanism of antibiotics against infectious
CO1	
	diseases.
CO^2	Optimize the production of pharmaceutical products
002	opininze the production of pharmaceutear products.
CO^2	Develop the pharmacoutical products without contamination and enailage
COS	Develop the pharmaceutical products without contamination and sponage.
604	
CO4	Apply the technology in drug delivery systems.
CO5	Follow the protocols and regulations to validate pharmaceutical products.
	I O I I I I I I I I I I I I I I I I I I

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	Н	Н	Н
CO2	Н	Н	Н	Н	Н
CO3	Н	М	Н	М	Н
CO4	Н	Н	Н	Н	Н
CO5	М	Н	Н	М	Н

MAPPING

18PMBMP30	CORE PRACTICAL III (Genetic Engineering, Industrial Microbiology, and Food and Dairy Microbiology)	SEMEST	ER III
Course Obje	ctives:		
The course ai	ms		
• To und	lerstand molecular techniques for nucleic acid and protein	analysis.	
• To stud	ly the quality of the milk by standard protocols.		
Credits: 03	Τ	otal Hou	rs: 60
Experiment	CONTENTS	Hrs	CO
1.	Isolation of Genomic DNA.	5	CO1
2.	Isolation of Plasmid DNA.	5	CO2
3.	Protein profiling – SDS-PAGE.	5	CO3
4.	Polymerase Chain Reaction.	5	CO3
5.	Restriction digestion	5	CO3
6.	Isolation of mutants by replica plating and gradient plate technique	5	CO3
7.	Bacterial conjugation	5	CO3
8.	Bacterial transformation and competent cell formation		CO3
9.	Western blotting	5	CO3
10.	Partial purification of enzymes by dialysis	5	CO3
11.	Methylene Blue Reduction Test (MBRT)	3	CO4
12.	Assessment of milk quality by Phosphatase test	3	CO4
13.	Examination of milk by Breeds count method	3	CO4
14.	Solid state fermentation of citric acid from Aspergillus niger	3	CO5
15.	Amylase production by Submerged fermetation	3	CO5
Reference Bo	ook:		

Γ

Gakhar, S.K. and Monica Miglani 2013. Molecular Biology: A 1. Laboratory manual. I.K. International house, Mumbai.

CO1	Analyze the bacterial genomic DNA and RNA.
CO2	Evaluate the molecular weight of proteins.
CO3	Apply the molecular techniques for protein analysis.
CO4	Evaluate and analyze the purity of milk.
CO5	Demonstrate the economically important microbial products.

100140140202	CORE PRACTICAL IV: STATISTICAL	SEMESTER III		р ш
18F WIDWIP 302	SOFTWARE			K III
Course Objecti	ves:			
The course aim	S			
To give	e a good grip on concepts in analyzing the data using st	tatistic	al soft	ware.
Credits: 02		Тс	otal Ho	ours: 24
PROGRAM	CONTENTS		Hrs	CO
1	Diagrams and graphs		03	CO 1
2	Measures of Central Tendency		03	CO 2
3	Measures of Dispersion		03	CO 2
1	Correlation Coefficient (Karl Pearson and Spearn	nan	an or cor	
4	Rank Method)		03	03
5	Regression lines		03	CO 3
6	Small Sample Test (t and F)		03	CO 4
7	Chi-square Test for Independence of Attributes.		03	CO 4
8	ANOVA (one way and two way classification)		03	CO 4
Reference Books:				
1.	Shentan J. Coakes, Lyndall Steed and Peta Dzidic. SPS	5S 13.	0 vers	ion for
	Windows analysis without Anguish. John Wiley & So	ons, A	ustrali	a.
2.	Andy Field. 2006. Discovering Statistics using SPSS	. [Sec	cond E	dition].
	SAGE Publications.			

CO 1	Demonstrate the data in diagrammatic and graphical representation
CO 2	Find the averages and measures dispersion
CO 3	Calculate correlation and regression for huge amount data
CO 4	Gain knowledge about test of significance

18PBCMBI301

INTERDISCIPLINARY COURSE II: PHARMACEUTICAL BIOCHEMISTRY

SEMESTER III

Course Objectives:

The course aims

- Pharmacodynamics and pharmacokinetics of drugs.
- Plant therapeutics

Credits: 02 Total Hours: 40 UNIT CONTENTS Hrs CO Drugs: History of Drugs, Definition-Nomenclature. Classification of drugs based on their source – Plant, animal, Ι 8 CO1 mineral and synthetic, based on action. Routes of drug administration, Drug absorptionmechanism. Factors influencing drug absorption Distribution and elimination of drugs. Factors influencing drug distribution and elimination. Mechanism of drug action-Physical, Chemical, Enzymes, Receptors. Drug-Receptor interactions: Receptor - Definition. Agonists, Π 8 CO₂ partial aganoists, inverse agonists and antagonists. Forces involved in drug-receptor interaction. Drug action not mediated through receptor. Dose response relationship (LD50 and ED50) Adverse drug reactions- Definition, Classification and drug induced side effects, biological effects of drug abuse and drug III dependence, drug tolerance and intolerance. Drug discovery-8 CO3 Animal toxicity studies and clinical evaluation Phase I-IV (Elementary details) Phytomedicine: History, Definition and of Scope 8 IV **CO4** Phytomedicine. Indian Medicinal systems- Ayurveda, Siddha

	and Unani. Medicinal properties and active principles of plant				
	parts (leaves, flowers, roots, seeds, rhizome, bark etc). Role of				
	medicinal and aromatic plants in national economy.				
	Secondary metabolites of plants - Alkaloids, flavonoids and				
	terpenoids, phenols - occurrence, distribution and functions.				
	(Synthesis not required).				
N	Extraction of Phytopharmaceuticals or crude drugs -	o	COF		
v	(Aqueous, Methonol and Chloroform extracts) maceration,	0	05		
	percolation (soxhlet) extraction - Analysis of phytochemicals				
	(carbohydrates, aminoacids, proteins, phenols, flavonoids,				
	alkaloids tannins, glycosides, saponins and terpenoids).				
Text Book	(S:		1		
1	Tripathi, K. D. 1999. Essentials of MedicalPharmacology. [Fourth Edition].				
1.	Jaypee Brothers Medical Publishers, New Delhi (UNIT - I, II & III).				
2	Kokate, C. K., Purohit, A. P. andGokhale, S.B. 2007. Pharmocognosy. [Thirty				
2.	Seventh Edition]. NiraliPrakasham, Pune. (UNIT – IV & V)				
Reference	Books:				
	Satoskar, R. S., Nirmala N. RegeandBhandarkar S.D, 2011. Pharma	acolog	y and		
1.	Pharmacotherapeutics [Twenty-Second edition]. Popoular Pra	akasha	n Pvt		
	Ltd, Mumbai				
2.	Roseline, A. 2011. Pharmacognosy. M.J.P Publishers, Chennai				

After the completion of the course, the student will be able to

CO1	Describe the drug sources, classification and its pharmacodynamics
CO2	Explain the mechanisms of action and fate of drugs inside living organisms
CO3	Analyze the effects of adverse drug reactions
CO4	Appreciate the various medical systems that utilize phytoconstituents as
	medicines
CO5	Explore the new strategies in the development of efficient drugs to combat
	diseases from plants

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	М	М	М	М
CO2	М	М	М	М	М
CO3	М	М	М	М	М
CO4	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н

		INTERDISCIPLINARY COURSE			
18PBCMBIP301		PRACTICAL II:	SEME	STER	III
PHARMACEUTICAL BIOCHEMISTRY					
Course	e Objective	s:			
The co	urse aims				
•	To enable t	he students to understand the basic concepts in extra	action,	screer	ning,
	quantificati	on process of secondary metabolites	,		0'
Credit	s: 02	1 5	Tota	l Hou	rs: 24
S.No.		EXPERIMENT		Hrs	CO
1	Extraction	of phytoconstituents of neem leaves using water an	d	2	1
1.	methanol	as solvents- Maceration and Soxhlet extraction		3	1
	Prelimina	ry phytochemical screening for the presence of follo	wing		
	constituen	ts			
	(i)	Carbohydrates			
	(ii)	Lipids			
	(iii)	Proteins and Amino acids			
2	(iv)	Phenols		6	1
2.	(v)	Flavonoids		0	1
	(vi)	Anthraquinones			
	(vii	(vii) Alkaloids			
	(viii) Terpenoids				
	(xi)	Glycosides			
	(x) :	Saponins			
3.	Quantitati	ve estimation of proteins (Lowry's method).		3	2
4.	Quantitati	ve estimation of carbohydrates (Anthrone method).		3	2
5.	Quantitati	ve estimation of phenols (Singleton and Rossi's metl	hod).	3	2
6.	Isolation a	and partial purification of phytoconstituents (Pheno	ol and	6	2
	Flavonoid	s) using Chromatographic techniques (TLC)			
Refere	nce Books:				
1.	<i>Kokate, C.</i> Nirali Pral	K., Purohit, A.P. and Gokhale, S.B. 2008. Phytoch e kasham, Pune	emical	Metl	nods.

CO1	Extract and screen the presence of various plant metabolites
CO2	Quantify the presence of biomolecules and secondary metabolites in samples

		INTER DISCIPLINARY COURSE II:			
18PBTM	BI301	ANIMAL CELL CULTURE TECHNOLOGY	SEMESTER III		
Course (Objectives				
The cou	rse aims				
To	understand t	he basic techniques in Animal cell culture.			
Credits:)2		Total Ho	ours: 40	
UNIT		CONTENTS	Hrs	СО	
	Introduction	to Animal cell culture, Applications of cell			
	culture, Desi	llture, Designing the cell culture laboratory – washing			
	and sterilizat	ion area, Storage area and cell culture room,			
Ι	Equipments	in tissue culture laboratory - Inverted	08 CO1		
	Microscope,	Centrifuge, Laminar flow benches, CO2			
	incubator.				
	Glassware a	nd other plastic ware in tissue culture -			
	Substrate ma	aterials for growing cells, cell culture			
11	vessels, cult	ure media - Properties and special	08	CO2	
	requirements	, Complete media, Conditioned media.			
	Type of cell of	culture - Isolation of primary explants culture,			
III	Isolation of a	cells and disaggregation method cell culture,	08	CO3	
	organ culture				
	Cell cultur	e - Transformation, Differentiation and			
IV	Dedifferentia	ation, Growth curve of cells, Types of	08	CO4	
	microbial co	nicrobial contamination, Stem cell culture.			
v	Applications	of Animal cell culture technology - Somatic	00	60 -	
	cell fusion, T	ransgenic fish and sheep.			
			I	I	

Reference Books:		
Sudha Gangal, 2010. Principles and Practice of Animal Tissue Culture.		
[Second Edition]. University Press (India) Pvt. Ltd.		
Freshney, R.I. 2005. Culture of Animal Cells: A manual of basic technique.		
[Fifth Edition]. John Wiley and Sons, New Jersey.		

COURSE OUTCOMES (CO) After the completion of the course the student will be able to

CO1	Handle animal cells and familiar with instruments
CO2	Prepare animal tissue culture media for culturing animal cells
CO3	Disaggregate the animal tissues
CO4	The differentiation of cells and stem cells
CO5	Apply the animal cell culture technology in day to day life

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	L	Н	М
CO2	М	Н	L	Н	М
CO3	М	L	М	Н	Н
CO4	Н	М	Н	Н	М
CO5	М	М	М	Н	М

18PBTMBIP	INTER DISCIPLINARY COURSE 301 PRACTICAL II: ANIMAL CELL CULTURE TECHNOLOGY	SEMESTER III			
Course Obje	ctives:				
The course at	ims				
• To ge	t hands on experience on Animal cell culture				
Credits: 02	Credits: 02 Total Hours: 20				
Experiment	CONTENTS	Hrs	СО		
1.	Sterilization techniques in Animal cell culture.		CO1		
2.	Media preparation for Animal Cell Culture.2CO2		CO1		
3.	Primary culture of Chick embryo fibroblast. 5 CO2		CO2		
4.	Trypsinization and subculturing.5CO2		CO2		
5.	Determination of viability of cells using Trypan blue stain. 5 CO2		CO2		
Reference Bo	ooks:	1			
1	<i>Freshney, R.I.</i> 2005. Culture of Animal Cells: A manual of basic technique.				
1.	[Fifth Edition]. John Wiley and Sons, New Jersey.				

CO1	Sterilize the media and utensils for Animal cell culture.				
CO2	Cultivate the animal cells and maintain it for further studies.				
CO3	Analyze viable cells				
18PM	BM401 CORE X: INDUSTRIAL MICROBIOLOGY	SE	MESTE	R IV	
---------	--	-----	---------	----------	--
Course	Course Objectives:				
The cou	arse aims				
• [Γο acquire an overview about the industrial processes.				
• [Γο understand the design of fermenters and its component	s.			
Credits	: 04	Т	otal Ho	urs: 50	
UNIT	CONTENTS		Hrs	CO	
	An introduction to fermentation process: Range	of			
	fermentation process - Component parts of a fermentati	on			
	process - Screening of industrial microorganisms- prima	ry		CO1	
Ι	screening - Crowded plate method, auxanograph	ıy,	10		
	indicator dye and enrichment. Secondary screenir	ıg.			
	Preservation of microorganisms - refridgerated storage	ge,			
	lyophilization, cryogenic storage.				
	Strain improvement and Media formulation: mutation	ı –			
	ionizing and non-ionizing radiation - rDNA technolog	gy.		<u> </u>	
тт	Strain development technique - bacteria, fungi and yea	st.	10		
11	Medium formulation and sterilization – batch, continuor	1S.	10	02	
	Del factor. Types of fermentation -submerged - solid sta	ate			
	fermentation.				
	Instrumentation and control of fermentor: Bo	dy			
	construction - aeration and agitation. Stirrer glands as	nd			
ш	bearings - baffles. Maintenance of aseptic conditions	-	10	CO3	
	sterilization of fermenter, air supply. Types of fermentor	r –	10	000	
	tower, cylindro-conical, air-lift – inner - out	er.			
	Measurement and control - Temperature, pH and Foam.				
IV	Microbial production: Antibiotics – Penicillin a:	nd	10	CO4	

	Streptomycin. Organic acids - Citric acid and Acetic acid.			
	Enzymes - Amylase and Protease. Yeast - Brewer's and			
	Baker's.			
	Production and recovery: Solvents – Ethyl alcohol, 2,3			
V	Butanediol. Aminoacids - L-Glutamic acid and L-Lysine.	10	CO5	
	Vitamins – B ₁₂ and C. Downstream processing.			
Text Bo	ooks:			
1.	Stanbury, P.F., Whittaker, A. and Hall, S.J. 1997. Principles of	Fermer	ntation	
	Technology. [Second Edition]. Reed Elsevier India Pvt. Ltd., N	ew Dell	ni.	
2.	Patel, A.H., 2005. An Introduction to Industrial Microbiolog	gy. Mac	millan	
	India Ltd., Chennai.			
Reference Books:				
1.	Michael J Waites, John S Roackey, Neil L. Morgan and Garry	Highton	. 2006.	
	Industrial Microbiology – An Introduction. Blackwell Science	Ltd., U	SA.	
2.	Cruegar, W and Cruegar, A. 1989. Biotechnology: A Textbook	of Ind	ustrial	

Microbiology. Panima Publishing Corporation, New Delhi.

COURSE OUTCOMES (CO)

After completion of the course, the students' will be able to

CO1	Understand and screen the industrial important microorganisms.
CO2	Develop strain improvement and media formulation.
CO3	Demonstrate the maintenance and design of the fermenter.
CO4	Apply the recovery process for purification process of intra and extra cellular products.
	Understand the physical chemical and biological methods of effluent
CO5	treatment.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	М	М
CO2	Н	Н	Н	Н	Н
CO3	М	М	М	М	М
CO4	М	Н	Н	Н	Н
CO5	М	М	Н	Н	Н

18PMBM402		CORE XI: FOOD AND DAIRY MICROBIOLOGY	SEMEST	ER IV	
Course	Objective	es:			
The cou	irse aims				
• To	learn the	basics of recombinant DNA technology.			
• To	acquire a	n idea about cloning mechanisms.			
Credi	ts: 05		Total Ho	ours: 50	
UNIT		CONTENTS	Hrs	СО	
	Introdu	ction: Importance of food and dairy Microbiology	_		
_	Types of	f microorganisms in food – Source of contamination	n		
Ι	(primary	v sources) – Factors influencing microbial growth in	n 10	CO1	
	foods (ex	xtrinsic and intrinsic).			
	Spoilage	e and preservation of different kinds of foods	5:		
II	cereals	and cereal products- milk and milk products	- 10	CO2	
	vegetabl	e and fruits-meat and meat products- fish and eggs			
	Food be	orne infections and intoxications: bacterial, nor	L-		
	bacterial	(Staphylococcus, Clostridium, Escherichia coli and	d		
III	Salmonel	la infections, Hepatitis, Amoebiosis and	d 10	CO3	
	Mycotox	kins)-Food borne disease outbreaks- Laborator	v		
	testing-1	preventive measures.			
	Food pr	eservation: Principles of food preservation-methods	6		
	of prese	rvation. Physical methods (irradiation, drving, hea	t		
IV	processi	ng, chilling and freezing, modification o	f 10	CO4	
	atmosph	ere) and Chemical preservatives.			
	Ferment	ed food products: Bread, Sauerkraut, cheese	2,		
v	Yoghurt	, Buttermilk and Tempeh. Food sanitation and it	s 10	CO5	
	control.	1			
Text Book:					
1.	Frazier.	W.C. and Westhoff, D.C. 2001. Food Microbiology	. [Fourth	Edition].	
	,		L	1.	

Referer	nce Books:
1.	Banwart, G.J.1989. Basic Food Microbiology. Chapman and Hall New York.
2.	Jay, J. M. 1987. Modern Food Microbiology. CBS Publishers and distributors,
	New Delhi.
3.	Adams, M.R. and Moss, M.O. 1995. Food Microbiology. The Royal Society of
	Chemistry, Cambridge.

Tata McGraw-Hill Publishing Company Limited, New Delhi.

COURSE OUTCOMES (CO)

After completion of the course, the students' will be able to

CO1	Discuss importance of food in dairy microbiology.
CO2	Understand the spoilage of food products for product development.
CO3	Analyze food borne infections and intoxications for product preservation.
CO4	Evaluate different kinds of food preservation methods for product safety.
CO5	Demonstrate various fermented food products.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	Н	Н
CO2	Н	Н	Н	Н	Н
CO3	Н	М	Н	М	Н
CO4	Н	Н	Н	Н	Н
CO5	М	Н	Н	М	Н

GUIDELINES

1. SUBMISSION OF RECORD NOTE BOOKS AND PROJECT DISSERTATION:

Candidates appearing for Practical Examinations and Project Viva-voce shall submit Bonafide Record Note Books/ Dissertation prescribed for Practical/ Project Viva-voce Examinations, otherwise the candidates will not be permitted to appear for the Practical/ Project Viva-voce Examinations.

2. PASSING MINIMUM AND INTERNAL MARK DISTRIBUTION:

(Theory, Practical and Project)

(i) A. THEORY (If Internal Evaluation is for 25 Marks)

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Theory paper with a passing minimum of 38 marks in External out of 75.

Internal Marks Distribution [CA- Total Marks: 25]

	Total	: 25 Marks
Internal Exam	inations	: 10 Marks
Seminar		: 5 Marks
Assignment		: 5 Marks
Attendance		: 5 Marks

(i) B. THEORY (If Internal Evaluation is for 100 Marks)

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks out of 100 in the Comprehensive Examination (Internal Evaluation only).

Internal Marks Distribution [CA- Total Marks: 100]

Total	: 100 Marks
Internal Examinations	: 60 Marks
Seminar	: 10 Marks
Assignment	: 20 Marks (2 Assignments Compulsory)
Attendance	: 10 Marks

ii) PRACTICAL

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive examination in each Practical paper with a passing minimum of 30 marks in External out of 60.

Internal Marks Distribution [CA- Total Marks: 40]

Total	: 40 Marks
Internal Examinations	: 20 Marks
Record	: 5 Marks
Attendance	: 5 Marks
Experiment	: 10 Marks (10-12 Experiments)

(iii) Assessment of technical skill (internal evaluation only)

Student shall attend two online tests (with multiple choice question) regarding soft skill, the marks and it might be converted to 60. Each student should score a minimum of 50 as pass mark.

Technical Skill: CSIR, ICMR, UGC - NET (Online test)

Total	: 100 Marks
Attendance	: 10 Marks
Test (2)	: 60 Marks
Assignment (2)	: 30 Marks

(iv) Assessment of Internship Training

Student should attend the internship training after the completion of II semester examinations. He/ She shall obtain the certificate for the period of training from the competent authority and submit the summer training report during III semester. He/She shall make a presentation and it should be assessed internally by the Department.

Attendance (Certificate given by the		
appropriate designated authority)	:	10 Marks
Submission Training report	:	50 Marks

Presentation of the training report	: 20 Marks
Viva-Voce	: 20 Marks
Total	:100 Marks

(v) Project Work / Dissertation

- The project work shall be carried out by each student in the IV semester and has to complete the work at the end Semester.
- Upon completion of the project work/dissertation the candidate will be required to appear for a viva-voce conducted by an external examiner.
- The Student has to attend 3 reviews before completing his/her Project.
- All 3 reviews will be reviewed by department faculty members.
- A candidate failing to secure the prescribed passing minimum in the dissertation shall be required to re-submit the dissertation with the necessary modifications.

Mark Distribution Pattern

Comprehensive Examination (CE) :150 Marks

Continuous Assessment (CA): 50 MarksThe candidate shall be declared to have passed the Examination, if the candidate securenot less than 100 marks put together out of 200 in the Comprehensive Examination in

each Project with a passing minimum of 75 marks in External out of 150.

Internal Mark Distribution [CA - Total Marks: 50 Marks]

Total	: 50 Marks
Review	: 15 Marks (Three reviews)
Observation Note	: 10 Marks
Attendance	: 5 Marks
Research work done	: 20 Marks

External Mark Distribution [CE - Total Marks: 150 Marks]

1. Project report	: 100 Marks
2. Presentation	: 25 Marks
3. Viva Voce	: 25 Marks
Total	: 150 Marks

CAREER COMPETENCY SKILLS METHODOLOGY OF ASSESSMENT

1. On Line Objective Examination (Multiple Choice questions) - Semester I

- 100 questions-100 minutes
- Twenty questions from each UNIT.
- On line examination will be conducted at the end of the III Semester.

2. Viva Voce Semester II

- A Student has to come in proper dress code and he/she should bring 2 copies of Resume for the Viva Voce.
- A student may be asked to
 - Give Self Introduction
 - Submit the resume to the examiner(s) and answer the questions based on it.
 - Speak on any given topic for at least two minutes.
 - Give a presentation for 10 minutes on a topic of their choice.
 - o Sit with other students in a Group for a Discussion.

3. QUESTION PAPER PATTERN AND MARK DISTRIBUTION THEORY

Question Paper Pattern and Mark Distribution (For 75 marks)

1. PART – A (5 x 5 = 25 Marks)

Answer ALL questions

One question from each UNIT with Internal Choice

2. PART – B (5 x 10 = 50 Marks)

Answer ALL questions

One question from each UNIT with Internal Choice

Question Paper Pattern and Mark Distribution (For 100 marks)

1. PART – A (5 x 5 = 25 Marks)

Answer ALL questions

One question from each UNIT with Internal Choice

2. PART – B (5 x 15 = 75 Marks)

Answer ALL questions

One question from each UNIT with Internal Choice

INTER DISCIPLINARY COURSES (IDC) OFFERED TO OTHER DEPARTMENTS

S.NO.	SUBJECT	SEMESTER	SUBJECT	OFFERED TO THE
	CODE			STUDENTS OF
1.	18PMBBCI201/ 18PMBBTI201	П	IDC I : Clinical Microbiology	M.Sc. Biochemistry/ M.Sc. Biotechnology
2.	18PMBBCIP201/ 18PMBBTIP201		IDC Practical I: Clinical Microbiology	M.Sc. Biochemistry/ M.Sc. Biotechnology
3.	18PMBBCI301/ 18PMBBTI301	111	IDC II: Industrial Microbiology	M.Sc. Biochemistry/ M.Sc. Biotechnology
4.	18PMBBCIP301/ 18PMBBTIP301	III	IDC Practical II: Industrial Microbiology	M.Sc. Biochemistry/ M.Sc. Biotechnology

18PMB 18PMB	BCI201/ BTI201	IDC I: CLINICAL MICROBIOLOGY	SEMESTER II		R II
Course					
• To en	able the learner	s to know basics in clinical Microbiology.			
• To lea	arn the diagnosi	s of infectious diseases.			
• To kn	ow about the m	odern approaches in clinical microbiology.			
Credits	s: 02		Т	otal Ho	urs: 40
UNIT		CONTENTS		Hrs	CO
	Infection: Sou	arces of infection - transmission of infection	1 -		
Ι	types of infect	ion. Classification of microbes based on hazar	d –	08	CO1
	Types of disea	ses - disease carriers.			
	Collection on	d transport of clinical spacimons, write r	110		
II	faces any type and blood			08	CO2
	raeces, sputum				
	Microbiologic	al examination of samples: sputum, pus, fae	ces	00	CO^{2}
111	and urine. Dia	gnosis of anaerobic infections.			COS
	Carological d	increasing of mismobiol discourses. Antigen to	10		
		agnosis of microbial diseases: Antigen tes	sts-		
IV	Agglutination	test for pregnancy, Elek's gel precipitation te	est,	08	CO4
	ELISA. Antibo	ody tests - WIDAL, ASO. Monoclonal antibod	ies		
	in clinical mici	robiology.			
	Molecular di	agnosis of infectious diseases: tuberculo	osis,		
v	malaria, AID	S. RFLP as a molecular marker in dise	ease	08	CO5
	diagnosis.				

Text Books:				
1.	Ananthanarayan, R. and JayaramPaniker, C.K.2008. Textbook of Microbiology.			
	[Seventh edition]. University Press (India) Private Limited, Hyderabad.			
2.	Monica Cheesbrough 1994. Medical Laboratory Manual for Tropical countries.			
	Volume II: Microbiology. ELBS Publishers.			
3.	Sathyanarayana, U. 2010. Biotechnology. Books and Allied (P) Ltd, Kolkatta.			

Reference Books:

 Jawetz, E, Melnic, J.K. and Adelberg, E.A. 1998. Review of Medical Microbiology, Lange Medical Publications, U.S.A.

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO1	Evaluate the infectious disease caused by microorganisms.
CO2	Apply the methods of collection and processing of clinical samples.
CO3	Apply the preliminary detection of pathogens for disease diagnosis.
CO4	Assess the serological detection of pathogens.
CO5	Develop diagnose the disease based on molecular methods.

MAPPING

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	Н	Н
CO2	М	Н	Н	Н	Н
CO3	М	М	Н	Н	Н
CO4	М	М	Н	Н	Н
CO5	Н	Н	Н	Н	Н

18PMBBCIP20	1/ IDC PRACTICAL I:	SEM	ESTER II		
Course Objectiv	es:				
The course aims					
• To loom th	a basis techniques in clinical microbiology				
	le basic techniques in chinical nucrobiology.				
To acquire	knowledge on identification of clinical pathogens.				
Credits: 02		Tota	Hours:20		
Experiment	CONTENTS	Hrs	CO		
1.	Colony morphology of pathogenic bacteria on selective media.	3	CO1		
2.	Morphological characterization of pathogenic bacteria by differential staining.	2	CO1		
3.	Identification of pathogenic bacteria by preliminary test, biochemical test and special test.a) Staphylococcus aureusb)Pseudomonas aeruginosa	5	CO1		
4.	Culture methods of fungi i. Media usage-PDA, SDA, Corn meal agar	5	CO2		
5.	Examination of fungi by Lactophenol cotton blue stain.	5	CO2		
6.	Examination of <i>Candida albicans</i> - Gram's stain, Germ tube test.	5	CO2		
Reference Books:					
	Gerald Collee, J. Barie P.Marmion, Andrew, G.	Fraser an	d Anthony		
1.	Simmons. 1996. Mackie and MacCartney	Practical	Medical		
	Microbiology. Fourteenth edition. Churchill Livin	igstone Pu	blishers.		
-	Sundararaj, T. Microbiology Laboratory Manua	l. Dr.A.L.	Mudaliyar		
2.	Post Graduate Institute of Basic Medical Sciences,	Chennai.			

COURSE OUTCOMES (CO)

After completion of the course, the students' will be able to

CO1	Identify and detect the pathogenic bacteria based on the morphological and
	physiological studies.
CO2	Evaluate the mycological diseases.

18PMBBCI301/	
18PMBBTI301	

INTER DISCIPLINARY COURSE II : INDUSTRIAL MICROBIOLOGY

SEMESTER III

Course Objectives:

The course aims

1. To learn the basics of bioprocess techniques.

2. To know about fermentor design and production of various fermented products.

Credits: 02 Total Hours: 40			
UNIT	CONTENTS	Hrs	CO
Ι	An introduction to fermentation process: Historical development of industrial microbiology– Component parts of a fermentation process – Screening of industrial microorganisms– primary screening – Crowded plate method, auxanography, indicator dye and enrichment. Secondary screening. Preservation of microorganisms – lyophilization, cryogenic storage.	8	CO1
Π	Strain improvement and Media formulation: rDNA technology. Medium formulation and sterilization – batch, continuous. Types of fermentation –submerged – solid state fermentation.	8	CO2
III	Fermentor: components and parts of fermentor – Body construction - stirring and mixing – scale up window – control of pH, temperature, foam and pressure – types of bioreactors – Air lift and cylindro conical bioreactors.	8	CO3
IV	Microbial production of fermented products : Antibiotics – Penicillin .Organic acid – Citric acid. Vitamin – Vitamin B12. Enzyme – α-amylase. Wine.	8	CO4

	Production and recovery: Solvents -	Ethyl alcohol.		
V	Aminoacids -L-Lysine. Vitamins - B ₁₂	2. Downstream	8	CO5
	processing.			

Text Books:			
1.	Stanbury, P.F., Whitaker, A., and Hall, S.J., 2005. Principles of Fermentation		
ļ	technology. Reed Elsevier India Ltd., New Delhi.		
2.	Patel, A.H., 2005. An Introduction to Industrial Microbiology. MacMillan		
	India Ltd., Chennai.		
	Cruegar, W and Cruegar, A. 1989. Biotechnology: A Textbook of Industrial		
3.	Microbiology. Panima Publishing Corporation, New Delhi.		

Reference Books:		
1.	Michael J Waites, John S Roackey, Neil L. Morgan and Garry Highton. 2006.	
	Industrial Microbiology - An Introduction. Blackwell Science Ltd., USA.	
2.	Hugo, W.B. and Russell, A.D. 1998. Pharmaceutical Microbiology.[Sixth	
	Edition]. Blackwell Scientific Company Ltd., USA.	

COURSE OUTCOMES (CO)

After the completion of the course, the student will be able to

CO1	Recall the basics and importance of industrially important microbes.
CO2	Apply the techniques for the formulation of media for microbial products.
CO3	Develop the suitable conditions for maximum product yield.
CO4	Apply fermentation technology for production of microbial products.
CO5	Demonstrate chemotherapeutic drugs production under <i>invitro</i> conditions.

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	L	Н	Н
CO2	L	L	L	Н	Н
CO3	L	М	М	Н	Н
CO4	L	М	М	Н	Н
CO5	Н	Н	Н	H	Н

MAPPING

18PMBBCIP301/	
18PMBBTIP301	

IDC PRACTICAL II: INDUSTRIAL MICROBIOLOGY

SEMESTER II

Course Objectives:

The course aims

- To learn the basic techniques in industrial microbiology.
- To acquire knowledge on antibiotics and its susceptibility.

Credits: 02		Total I	Hours:30
Experiment	CONTENTS	Hrs	CO
1.	Screening of antibiotic producing organisms from soil.	3	CO1
2.	Screening of amylase enzyme producing organisms from soil.	2	CO1
3.	Antibiotic sensitivity disc preparation.	5	CO1
4.	MIC determination by filter paper disc assay.	5	CO2
5.	Antibiotic susceptibility method- Kirby Bauer method.	5	CO2
6.	Evaluation of disinfectant- Phenol Coefficient method.	5	CO2
7.	Wine production	5	CO2
Reference Books:			
	Gerald Collee, J. Barie P.Marmion, Andrew, G.	Fraser and	d Anthony
1.	Simmons. 1996. Mackie and MacCartney	Practical	Medical
	Microbiology. Fourteenth edition. Churchill Livingstone Publishers.		
2	Sundararaj, T. Microbiology Laboratory Manua	1. Dr.A.L.	Mudaliyar
۷.	Post Graduate Institute of Basic Medical Sciences,	Chennai.	

COURSE OUTCOMES (CO)

After completion of the course, the students' will be able to

CO1	Assess antibiotic and enzyme production and produce industrially important products.
CO2	Evaluate the susceptibility of antibiotics and disinfectants.