MASTER OF SCIENCE (PHYSICS)

VISION

To nurture the young minds with unique proficiency in Physics to meet the global challenges.

MISSION

- To offer quality education in Physics by providing scientific inquiry and innovation.
- > To kindle research interest by providing an excellent scientific ambience.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

- PEO 1: To impart advanced knowledge in theoretical and experimental Physics.
- **PEO 2**: To improve analytical skill, logical thinking and problem solving ability through the concept of Physics.
- **PEO 3**: To impart fundamental knowledge in various interdisciplinary subjects and to promote research interest in students for the benefit of society.

PROGRAMME OUTCOMES (PO)

After completion of the programme, the graduates will be able to

- **PO 1**: Describe the advanced concepts in theoretical and experimental Physics.
- **PO 2**: Utilize the new concepts in thrust areas of domain to take research as a career.
- **PO 3**: Apply the domain knowledge to understand the nature of Universe.
- **PO 4**: Analyze and create the solutions for real time problems in various areas of physical science.
- **PO 5**: Formulate the multidisciplinary knowledge to kindle research interest for the benefit of society.

PROGRAMME SPECIFIC OUTCOMES (PSO)

After completion of the programme, the graduates will be able to

- **PSO 1**: Demonstrate the laws and nature of various physical phenomena.
- **PSO 2**: Explain the advanced theories and models in various areas of physical science.
- **PSO 3**: Apply the theories learnt and the skills acquired to solve multifaceted problems in Physics.
- **PSO 4**: Utilize the analytical and computational skills for solving real time problems.
- **PSO 5**: Formulate the multidisciplinary knowledge for creative synthesis, individual thoughts and collaborative action to face the global challenges.

REGULATIONS

ELIGIBILITY

A candidate who has passed the B.Sc., degree examination in Branch III Physics Main or B.Sc., in Applied Physics or B.Sc., Physics (Vocational) of Periyar University or an examination of some other university accepted by the syndicate as equivalent thereto shall be permitted to appear and qualify for the M.Sc. Physics (CBCS) Degree examination of Periyar University after a course of two academic years.

DURATION OF THE PROGRAMME

The course shall extend over a period of two years comprising of four semesters with two semesters in one academic year. There shall not be less than 90 working days for each semester. Examination shall be conducted at the end of every semester for the respective subjects.

DURATION OF THE PROGRAMME

The maximum duration for completion of the PG Programme shall not exceed 8 semesters.

SCHEME OF EXAMINATION

	Carbinat	Hrs of	Exam	Ν	Max Marks		Credit	
Subject Code	Subject	Instruction	Duration (Hrs)	CA	CE	Total	Points	
First Semester								
		Part A	r		T			
18PPHM101	Core I : Mathematical Physics	6	3	25	75	100	5	
18PPHM102	Core II: Classical Mechanics	6	3	25	75	100	5	
18PPHM103	Core III: Statistical Mechanics	6	3	25	75	100	5	
18PPHM104	Core IV: Condensed Matter Physics	6	3	25	75	100	5	
18PPHMP101	Core Practical I: Advanced Physics Practical I	5	4	40	60	100	3	
		Non-credit		1	•	-		
18PLS101	Career Competency Skills I	1	-	-	-	-	-	
	Total	30				500	23	
Second Semest	er							
		Part A						
18PPHM201	Core V: Quantum Mechanics I	6	3	25	75	100	5	
18PPHM202	Core VI : Electromagnetic Theory	6	3	25	75	100	5	
	Elective I	5	3	25	75	100	4	
18PPHMP201	Core Practical II: Advanced Physics Practical II	5	4	40	60	100	3	
18PCSPHI201	IDC I: Computer Graphics and Multimedia	3	3	25	75	100	2	
18PCSPHIP201 IDC Practical I: Multimedia Tools		2	3	40	60	100	2	
	·	Part B		•	-	• 		
18PVE201	Value Education: Human Rights	2	3	25	75	100	2	
		Non-credit						
18PLS201	Career Competency Skills II	1	-	-	-	-	-	
	Total	30				700	23	

0.11. / 1		Hrs of	Exam	N	Max M	arks	Credit
Subject code	Subject	Instruction	Duration (Hrs)	CA	CE	Total	Points
Third Semester	ſ			•			
		Part A					
18PPHM301	Core VII: Quantum Mechanics II	6	3	25	75	100	5
18PPHM302	Core VIII: Advanced Electronics	6	3	25	75	100	4
18PPHM303	Core IX: Microprocessor and Microcontroller	5	3	25	75	100	4
	Elective II	5	3	25	75	100	4
18PPHMP301	Core Practical III: Advanced Electronics Practical	4	3	40	60	100	3
Optional Paper	:S						
18PECPHI301	IDC II: Modern Biomedical Instrumentation	4	3	25	75	100	4
18PBCPHI301	IDC II: Molecular Biophysics	4	5	25	75	100	4
	Total	30				600	24
Fourth Semeste	er						
		Part A					
18PPHM401	Core X: Spectroscopy	6	3	25	75	100	4
18PPHM402	Core XI: Nuclear and Particle Physics	6	3	25	75	100	4
18PPHM403	Core XII : Computational Physics	6	3	25	75	100	4
18PPHMP401	Core practical IV: Computation using MATLAB	3	3	40	60	100	2
18PPHPR401	Project & Viva-Voce	5	-	50	150	200	6
	Total	26				600	20
			Grand total			2400	90

ELECTIVE I

Students shall choose any one subject as an elective from the following subjects in the second semester.

S.No	Subject code	Subject
1	18PPHEL201	Modern Optics
2	18PPHEL202	Nonlinear Dynamics
3	18PPHEL203	Biomaterials

ELECTIVE II

Students shall choose any one subject as an elective from the following subjects in the third semester.

S.No	Subject code	Subject
1	18PPHEL301	Physics of Nanoscale
2	18PPHEL302	Crystal Growth and Thin Film Physics
3	18PPHEL303	Instrumental Methods of Analysis

FOR COURSE COMPLETION

Students should complete

- Two elective subjects in II and III semester.
- Two IDC in II and III semester.
- Human Rights as value education in II semester.
- Project at the end of IV semester.

Components	Components Total Marks		Credits
Pa	rt A		
Core	12X100	1200	7 X 5 = 35
			5 X 4 = 20
Elective	2 X 100	200	2 X 4 = 08
Core practical	4 X 100	400	3 X 3 = 09
			1 X 2 = 02
Inter Disciplinary Course theory	2 X 100	200	1 X 4 = 04
			1 X 2 = 02
Inter Disciplinary Course practical	1 X 100	100	1 X 2 = 02
Project & Viva-Voce	1 X 200	200	1 X 6 = 06
Ра	rt B		
Value Education	1 X 100	100	1 X 2 = 02
	Total	2400	90

TOTAL CREDIT DISTRIBUTION

18PPF	IM101 CORE I: MATHEMATICAL PHYSICS SER	MESTE	ER – I					
COURS	SE OBJECTIVES							
The cou	The course aims							
• 1	• To impart knowledge on vectors space, tensors, matrix and Fourier's							
t	transforms.							
• T	To provide knowledge on group theory, differential equatio	n and	special					
f	unctions.		_					
Credits	:5 T	otal Ho	urs: 50					
UNIT	CONTENTS	Hrs	CO					
	Vectors space: Basic definitions - Linear independence of							
	vector - Bilinear and quadratic forms - Change of basis -							
	Schmidt's orthogonalization processes - Schwartz inequality							
	- Application of vector to hydrodynamics - The equation of							
Ι	heat flow in solids.	10	CO1					
	Tensors: n-dimensional space - Superscripts - Subscripts -							
	Coordinate transformations - Kronecker delta symbol -							
	Properties - Generalized Kronecker delta - Tensors of higher							
	ranks - Symmetric and asymmetric tensors.							
	Matrix: Eigen values and Eigen vectors - Eigen value							
	problems - Characteristics equation - Cayley Hamilton							
	theorem - Cramer rule.							
	Fourier series and transforms: Fourier series - Dirichlet's	10	cor					
II	theorem - Properties and applications of Fourier series -	10	CO2					
	Fourier transform - Properties of Fourier's transform - Finite							
	Fourier transforms - Simple applications of Fourier							
	transforms.							
	Differential equation and special function: Linear ordinary							
	differential equations of first and second order - Legendre,							
III	Bessel, Laugerre and Hermite differential equations: Series	10	CO3					
	solution - Rodrigue formula - Generating functions -							
	Orthogonality relations - Important recurrence relations.							
	Complex variable: Functions of complex variables - Limit -							
	Continuity - Differentiability - Analytic function - Cauchy -							
	Riemann condition – Differential equation – Cauchy integral							
IV	theorem - Cauchy integral formula - Taylors series -	10	CO4					
	Laurent's series - Singularities of an analytical function -							
	Residues - Cauchy Residue theorem - Evaluation of definite							
	integrals - Contour integration.							
v	Group theory: Basic definitions - Multiplication table -	10	CO5					
•	Subgroups, cosets and classes - Direct product groups -	10						

Point groups - Space groups - Representation theory -							
Homomorphism and isomorphism - Reducible and							
irreducible representations, Schur's lamma - The great							
orthogonality theorem - Character table – C_{2v} and C_{3v} as							
examples - Application for molecular vibration.							

TEXT BOOK:

1. *Gupta, B.D.* 2014. **Mathematical Physics**. [Fourth Edition]. Vikas Publishing House Pvt. Ltd., New Delhi.

REFERENCE BOOKS:

- 1 *Arfken, G., Weber, H., and Harris F.E.* 2012. **Mathematical methods for Physicist.** [Seventh Edition]. Elesvier, Amsterdam.
- 2 *Satyaprakash.* 2004. **Mathematical Physics.** [First Edition]. Sultan Chand & Sons, New Delhi.
- 3 *Kreyszig, E.* 1999. Advanced Engineering Mathematics. [Eighth Edition]. Wiley, New York.
- 4 *Dass, H. K.* 1998. **Mathematical Physics.** [First Edition]. S. Chand and Company, New Delhi.
- 5 *Chattopadhyay, P.K.* 2018. **Mathematical Physics.** [Second Edition]. New Age International, New Delhi.
- 6 *Joshi, A.W.* 1997. Elements of Group Theory for Physicists. New Age International, New Delhi.

WEB REFERENCES:

- 1 https://ocw.mit.edu/courses/physics/
- 2 http://nptel.ac.in/courses/115103036/

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Explain the concept of vector space and tensor for solving problems in
	dynamics.
CO 2	Analyze the problems in matrix, Fourier series and transforms.
CO 3	Know the concepts of some special functions and their solutions.
CO 4	Analyze the complex functions for solving complex problems.
CO 5	Apply group theory for understanding the molecular vibrations.
MADD	

MAPPING

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	Н	Н	М
CO 2	М	Н	Н	М	М
CO 3	М	Н	Н	Н	Н
CO 4	L	Н	Н	Н	М
CO 5	М	Н	Н	Н	Н

18PPH	IM102 CORE II : CLASSICAL MECHANICS SEI	MEST	ER – I					
COUR	SE OBJECTIVES							
The co	arse aims							
To impart knowledge on Lagrangian and Hamiltonian formulation,								
• '	To provide knowledge about central force problems							
• ′	Го impart knowledge on the motion of rigid bodies and small os	scillatio	ons.					
Credite	:5 To	otal Ho	urs: 50					
UNIT	CONTENTS	Hrs	CO					
	Lagrangian formulation: System of particles - Constraints							
	and degrees of freedom - Generalized coordinates -							
	Conservation laws - Conservations of linear and angular							
Ι	momenta - D'Alemberts principle of virtual work -	10	CO1					
	Lagrange's equation of motion - Applications of Lagrange							
	equations of motion: Single particle in space - Atwood's							
	machine - Bead sliding in rotating wire.							
	Hamilton principle: Hamilton's equation and Canonical							
	Transformation- Hamilton's principle - Applications of							
	Hamilton's equations: Particle moving in EM field -							
	Derivation of Lagrange's equation from Hamilton's principle							
	- Legendre transformation and Hamilton's equation of							
II	motion - Cyclic coordinates and conservation theorem -	10	CO2					
	Hamilton's equations from variational principle - physical							
	significance of Hamilton's function - Principle of least action							
	- Canonical transformations - Generating functions -							
	Examples - Poisson brackets and its properties.							
	Central Force Problem : Reduction to the equivalent one							
	body problem - Centre of mass - Equation of motion and							
	first integral - Equivalent one dimensional problem and							
III	classification of orbits - Kepler problem: Inverse - Square law	10	CO3					
	of force - Proof of Kepler's laws - Newton's law of gravitation							
	from Kepler's laws.							
	Kinematics of rigid body: Independent coordinates of rigid							
	body - Orthogonal transformation - Properties of							
	transformation matrix - Euler angle and Euler's theorem -							
	Infinitesimal rotation - Rate of change of vector - Coriolis							
IV	force - Angular momentum and kinetic energy of motion	10	CO4					
	about a point - Moment of inertia tensor - Euler's equations							
	of motion - Torque free motion of a rigid body - Heavy							
	symmetrical top.							
	synmetred top.							

		Hamilton-Jacobi theory and small oscillation: Hamilton-						
		Jacobi equation for Hamilton's principle function - Example:						
		Harmonic oscillator problem - Hamilton's characteristic						
	V	function - Action - angle variable in systems of one degree of 10 CO5						
	•	freedom - Application to Kepler problem - Formulation of		000				
		the problem - Eigen value equation - Frequencies of free						
		vibrations - Normal coordinates - vibrations of linear						
	triatomic molecule.							
TI	EXT	BOOKS:						
1	Go	ldstein, H. 2018. Classical Mechanics. [Second Edition]. Naros	sa Pub	lishing				
	Ho	ouse, New Delhi.						
2	Gu	pta, S.L. Kumar, V. Sharma, H.V. 2010. Classical Mechan	nics. [Second				
		ition]. Pragati Prakasham, Meerut.						
R	EFEF	RENCE BOOKS:						
1	Tak	wale, R. G. and Puranik, P.S. 1979. Introduction to Classical Me	chanic	s. Tata				
	Mc	Graw-Hill Education, Delhi.						
2	Arı	uldhas, G. 2009. Classical Mechanics, [Second Edition]. PHI Lea	rning	Private				
	Lin	nited, New Delhi.						
3	Rar	a, N.C. Joag, P.S. 2015. Classical Mechanics, [Twentieth Edit	tion Re	eprint].				
	Tat	a McGraw-Hill, Delhi.						
W	EB F	REFERENCES:						
1	http	ps://ocw.mit.edu/courses/physics/						
2	http	p://www.feynmanlectures.caltech.edu/						
3	http	p://nptel.ac.in/courses/115106068/						
C	OUR	SE OUTCOMES (CO)						
А	fter	completion of the course, the students will be able to						
C	O 1 Explain the motion of macroscopic objects through Lagrange equations.							
C	D 2 Describe the Hamilton's formulation and generating functions							
C	D 3	Evaluate the central force problems particularly planetary moti-	on.					
C	D 4	Analyze the kinematics of rigid body and Euler's equations of r	notion					
C	D 5	Apply the Hamilton-Jacobi theory for small oscillations.						
Μ	APP	ING						

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	L
CO 2	М	Н	Н	Н	М
CO 3	Н	Н	Н	Н	М
CO 4	Н	Н	Н	М	М
CO 5	М	Н	Н	М	М

18PPH	M103 CORE III: STATISTICAL MECHANICS S	EMESTE	R – I			
COUR	SE OBJECTIVES					
The co	The course aims					
•	• To provide the fundamentals of thermodynamics and statistical mechanics.					
•	• To impart the knowledge on various quantum statistics and advanced					
	physical phenomena.					
Credit	5:5	Total Ho	urs: 50			
UNIT	CONTENTS	Hrs	CO			
I	Thermodynamics: Thermodynamical laws and the consequences – Entropy and disorder – Changes in entrop in reversible processes – Thermodynamic functions Intrinsic energy, Enthalpy, Helmholtz functions and Gibb potential – Thermodynamic equilibria – Chemical potential Nernst's theorem.	y - 's 10	CO1			
II	Classical statistics-I: Phase space – Density distribution phase space - Postulate of equal a priori probability - Mic and macro states – Maxwell-Boltzmann distribution law Principal of equipartition energy – Boltzmann's postulate entropy - Classical Ideal gas - Entropy of ideal gas: Gibb paradox.	ro - of 10	CO2			
III	Classical statistics-II: Ensembles - Microcanonical, Canonical and Grand canonical ensembles – Liouville's Theorem Statistical equilibrium – Connection between statistical are thermodynamical quantities - Partition function are correlation with thermodynamical quantities - Viri equation of state – Van der Waals gas.	- nd nd 10	CO3			
IV	Quantum statistics-I: Postulates of quantum statistic mechanics - Maxwell - Boltzmann statistics – Bose Einste quantum statistics – Fermi Dirac statistics - Blackboo radiations and Plank's distribution law -Bose Einstein ga Energy and degeneracy – Bose Einstein condensation Liquid helium – Superfluidity.	in ly s: 10	CO4			
v	Quantum statistics-II: Fermi Dirac gas: Energy and degeneracy – Electron gas – Pauli's theory of paramagnetis - Random walk and Brownian motion – Phase transitions First and second order phase transitions – Critical points Ising model - Production of low temperature – Adiabate demagnetization – Measurement of low temperature.	10	CO5			

TEXT BOOK:

1 *Sears, F.W. and Salinger, G.L.* 1998. **Thermodynamics Kinetic Theory and Statistical Thermodynamics**. [Third Edition]. Narosa Publishing House, New Delhi.

REFERENCE BOOKS:

- 1 *Huang, K.* 1987. **Statistical mechanics.** [Second Edition]. John Wiley and Sons, New York.
- 2 *Laud, B.B.* 2017. Fundamentals of Statistical Mechanics. New Age International, New Delhi.
- 3 *Reif, F.* 2014. Statistical Physics. Vol V. McGraw Hill, New Delhi.
- 4 *Gupta, S. L, Kumar, V.* 2015. **Statistical Mechanics**. [Twenty Seventh Edition]. Pragati Prakashan, Meerut.
- 5 *Agarwal, B.K., Eisner, M* 2018. **Statistical Mechanics**. [Second Edition]. New Age International, New Delhi.

WEB REFERENCES:

- 1 https://ocw.mit.edu/courses/physics/
- 2 http://nptel.ac.in/courses/103103036/9
- 3 https://www.khanacademy.org/

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Explain the fundamentals of thermodynamics and its correlation with
	classical mechanics.
CO 2	Apply the concepts of phase space, ensembles and Liouville's theorem.
CO 3	Explain the classical distribution law, Gibbs' paradox and Partition function.
CO 4	Know the various statistics and concept of Bosons.
CO 5	Explain the concept of Fermion and advanced phenomena through
	quantum statistics.

MAPPING

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	Н	Н	М
CO 2	Н	М	Н	Н	М
CO 3	Н	Н	Н	Н	М
CO 4	Н	Н	Н	Н	М
CO 5	Н	Н	Н	Н	М

18PPH	M104 CORE VI: CONDENSED MATTER PHYSICS	SEN	1ESTI	ER – I			
COURS	E OBJECTIVES						
The cou							
	 To impart the fundamental concepts on crystals and its various structures. 						
	o provide knowledge about various bonds in solids and lat						
	o impart knowledge about the various properties of solids.		101010	01101			
	Credits: 5 Total Hours: 50						
UNIT	CONTENTS		Hrs	CO			
Ι	Crystal Physics: Elementary concepts of crystals - Milindices - Bravais lattice - Reciprocal lattice and Properties - Crystal symmetry - Point groups and Spagroups - Brillouin zones - Different crystal structure: Simple cubic, BCC, FCC, Hexagonal closed packed structure, Na Diamond structure, ZnS, CsCl - Crystal diffraction: Brag law - Laue, powder, and rotation methods - Structure factor - Defects in crystals - Point, line, surface and volume deferent colour centres.	its ace ple iCl, gg's ctor	10	CO1			
Ш	 Bondings in Solids: Ionic bond – Covalent bond - Meta bond – Hydrogen bond – Molecular bond. Lattice Vibrations and Phonons: Vibration of or dimensional monoatomic and diatomic linear lattice Acoustical and Optical branch - Concept of phonor Momentum of phonon - Umklapp process - Inelas scattering of neutron by phonon. Thermal Properties of Solids: Specific heat capacity solids - Einstein's Model - Debye model – Debye's T³ lat Thermal conductivity of solids. 	one e - n - stic of	10	CO2			
III	 Free Electron Theory of Metals: Drude-Lorentz theore. Sommerfield Model – Free electron gas in three dimension. Fermi-Dirac distribution function – Electronic specific h. Thermionic emission. Band theory of Solids and Semiconductors: Nearly f. electron model – Kronig-Penney model - Pure and dop semiconductors - Intrinsic carrier concentrations - H. Effect. 	ons leat free ped	10	CO3			
	Magnetic properties of Materials: Classification magnetic materials – Theory of diamagnetism – Langer theory of paramagnetism - Weiss theory – Quantum theo of paramagnetism – Determination of magnet	vin ory					

		susceptibility of paramagnetic material by Gouy's method -				
		Quantum theory of ferromagnetism – Weiss Molecular field				
		theory - Curie-Weiss law - Ferromagnetic domains -				
		Domain theory – Ferrites.				
	IV	Dielectrics and Ferroelectrics: Polarization - Classification	12	CO4		
		of polarization - macroscopic electric field - Local electric				
		field at an atom - Lorentz field - Dielectric constant and				
		polarizability - Clausius - Mossotti relation - Ferroelectric				
		crystals - Ferroelectric domains - Piezoelectricity.				
		Superconductivity: Occurrence of superconductivity -				
		Destruction of superconductivity by magnetic fields -				
		Meissner effects - Type I and Type II superconductors -				
	.	Heat capacity - Electron - phonon interaction - Cooper				
	V	pairs and BCS theory - London equation - Coherence	08	CO5		
		length - Flux quantization in superconducting ring -				
		Josephson effect - Applications of superconductors -				
		SQUIDS - High temperature superconductivity.				
TE	EXT B	OOKS:				
1	Wahab, M. A. 2009. Solid State Physics: Structure and Properties of Materials.					
	[Seco	[Second Edition]. Narosa Publishing House, New Delhi. (Unit – I, II, IV, V).				
2	Saxer	na, B.S., Gupta, R.C. and Saxena. P.N. 2015. Solid State Phys	sics. []	welfth		
	Editi	ion]. Pragati Prakashan, Meerut. (Unit – I, II, III).				
RF	EFERE	ENCE BOOKS:				
1		l, C. 2009. Introduction to Solid State Physics. [Eighth Ec	lition].	Wiley		
_		ern. New Delhi				
2		a, S.L and Kumar. V. 2013. Solid State Physics. [Ninth Edition	n]. K. I	Nath &		
2	Co, Meerut.					
3		<i>roft, NW</i> . 2016. Solid State Physics . Cengage Learning, New D				
4	<i>Pillai, S.O.</i> 2005. Solid State Physics. New Age International, New Delhi.		п·.			
5	<i>Rita John.</i> 2014. Solid State Physics. McGraw Hill Education (India) Private					
TA/	Limited, New Delhi. /EB REFERENCES:					
1	-	x://ocw.mit.edu/courses/physics/				
2	http://nptel.ac.in/courses/115105099/					
3	nttps	https://www.khanacademy.org				

COURSE OUTCOMES (CO)

CO 1	Explain the concepts of crystal structure, X-ray diffraction and crystal	
	defects.	
CO 2	Describe the nature of various bonds in solids, lattice vibrations and thermal	
	properties of solids.	

CO 3	Apply the free electron theory and band theory to understand the properties of solids.
CO 4	Describe the theories about magnetic and dielectric properties of materials.
CO 5	Explain the impact of superconductivity on scientific world.

MAPPING

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	Н	Н	Н
CO 2	Н	Н	Н	Н	Н
CO 3	М	Н	Н	Н	М
CO 4	Н	Н	Н	Н	М
CO 5	Н	Н	Н	Н	Н

18PPHMP101

CORE PRACTICAL I: ADVANCED PHYSICS PRACTICAL I

SEMESTER - I

COURSE OBJECTIVES

The course aims

- To give exposure for understanding the various physical phenomena.
- To develop the experimental skills to determine physical parameters and constants.

Credits:	Credits: 3 Total Hours: 50		
Ex.No.	LIST OF EXPERIMENTS (Any Ten Experiments)	Hrs	CO
1	Determination of Young's modulus of glass plate by forming hyperbolic fringes using Cornu's method	5	CO1, CO2
2	Determination of polarizability of liquids using spectrometer.	5	CO1, CO2
3	Determination of Hall co-efficient and carrier concentration of given semiconductor using Hall effect four probe setup.	5	CO1, CO2
4	Determination of the value of Stefan's constant.	5	CO1, CO3
5	Determination of specific charge of electron by Thomson's method.	5	CO1, CO3
6	Determination of the energy loss of magnetic material from B-H hysteresis loop.	5	CO1, CO2
7	Determination of temperature coefficient and band gap energy of a given thermistor.	5	CO1, CO2
8	Find out the crystalline phase and unit cell parameters of given crystalline material using XRD.	5	CO1, CO2
9	Determination of magnetic susceptibility of aqueous magnetic solution by Gouy's method.	5	CO1, CO2
10	Determination of Planck's constant using photocell	5	CO1, CO3
11	Determination of thermal conductivity of given rod by Forbe's method.	5	CO1, CO2
12	Determination of resistivity of a semiconductor by Four Probe Method.	5	CO1, CO2
13	Determination of Rydberg's constant – Hydrogen spectrum and solar spectrum.	5	CO1, CO3
14	Determination of charge of an electron by spectrometer.	5	CO1, CO3
15	Determination of dielectric loss using CRO.	5	CO1, CO3

REFERENCE: M.Sc., Physics Laboratory Manual

COURSE OUTCOMES (CO)

CO 1	Explain and analyze the various physical phenomena such as deformation,
	polarizability, Hall effect, magnetization, X-ray diffraction, thermal and
	electrical conduction.
CO 2	Apply various methods to determine the different physical parameter of
	given materials such as young's modulus, Hall co-efficient, band gap,
	carrier concentration, magnetic energy loss, magnetic susceptibility,
	crystalline parameters, conductivity, dielectric loss, and resistivity.
CO 3	Apply different methods to determine the various physical constants such
	as Stefan's constant, Planck's constant, Rydberg's constant and change of
	electron.
L	

18PLS101

CAREER COMPETENCY SKILLS I SEM

SEMESTER – I

COURSE OBJECTIVES

The course aims

- To impart knowledge on the aptitude.
- To enhance employability skills and to develop career competency.

No	Non-credit Total Hours: 15		ours: 15	
UI	NIT	CONTENTS	Hrs	CO
	Ι	Solving Simultaneous Equations Faster – Number System : HCF, LCM – Square roots and Cube roots - Averages	3	CO1
	II	Problems on Numbers - Problems on Ages	3	CO1
J	III	Calendar – Clocks – Pipes and Cisterns	3	CO1
J	IV	Time and Work – Time and Distance	3	CO2
	V Ratio and Proportion – Partnership – Chain Rule		3	CO3
TE	TEXT BOOK:			
1	Aggarwal R.S. 2013. Quantitative Aptitude. [Seventh Revised Edition]. S.Chand			
	& Co., New Delhi.			

REFERENCE BOOK:

1 *Abhijith Guha*, **Quantitative Aptitude for Competitive Examinations**, 5th Edition, Tata McGraw Hill, 2015, New Delhi.

COURSE OUTCOMES (CO)

CO 1	Carry out mathematical calculations using shortcuts.
CO 2	Calculate Problems on Ages with shortcuts.
CO 3	Understand the core concepts of Pipes & Cisterns, Calendar & Clocks.
CO 4	Obtain knowledge on shortcuts to Time & Work and Time & Distance.
CO 5	Calculate Ratio & Proportion, Partnership with shortcuts.

18PPHM201	CORE V: QUANTUM MECHANICS I	SEMESTER - II
-----------	-----------------------------	---------------

COURSE OBJECTIVES

The course aims

- To impart knowledge on foundations of wave mechanics, angular momentum.
- To develop knowledge about time independent perturbation theory and identical particles.

Credits	Credits: 5 Total Hours: 50					
UNIT	CONTENTS	Hrs	CO			
Ι	Foundations of wave mechanics : Equation of motion of matter waves - Schrodinger's equation for the free particle - Physical interpretation of the wave function - Normalised and orthogonal wave functions - Expansion theorem - Solution of Schrodinger equation - Stationary state solution - Expectation values of dynamical quantities - Probability current density - Ehrenfest's theorem - Postulates of wave mechanics - Hilbert space - Hermitian operators - Properties - Commutativity and simultaneous eigen function - Parity operator - Commutation relation between momentum and position - Eigen energy states for simple Harmonic Oscillator (Operator formalism).	12	CO1			
II	Energy Eigen value problems : The simple Harmonic Oscillator - Energy Eigen values and energy Eigen functions - Schrodinger's equation for spherically symmetric potentials - The Rigid rotator with free axis - The hydrogen atom - Energy Eigen values for hydrogen atom - Degeneracy - Normal state of hydrogen atom - Barrier penetration problem.	10	CO2			
III	Angular momentum : Angular momentum operator in position representation – Orbital angular momentum – Spin angular momentum – Total angular momentum operators – Commutation relations of total angular momentum with its components – Ladder operators – Commutation relation of J_z with J_+ and J – Eigen values of J^2 and J_z – Matrix representation of J^2 , J_z , J_+ and J – Additional of angular momenta – Clebsch Gordan coefficients – Properties.	10	CO3			

Ι	V	Approximation methods : Time independent perturbation theory – non-degenerate case - Physical applications of non- degenerate perturbation theory - Ground state of Helium atom - Degenerate case - Stark effect in Hydrogen atom - Variation method and its application to hydrogen molecule - WKB approximation.	10	CO4		
 Symmetrical and anti symmetrical wave Construction of Symmetrical and anti symmetrical and anti symmetrical functions from unsymmetrised functions - Paa operator - Pauli's exclusion principle - Pauli's Slater's determinant - Symmetric and anti symmetrical symmetrical and anti symmetrical anti symmetrica		Identical particles: Physical meaning of identity - Symmetrical and anti symmetrical wave functions - Construction of Symmetrical and anti symmetrical wave functions from unsymmetrised functions - Particle exchange operator - Pauli's exclusion principle - Pauli's principle from Slater's determinant - Symmetric and anti symmetric wave functions of hydrogen molecule.	08	CO5		
TE	EXT I	BOOK:				
1	Sat	tya Prakash, 2010. Advanced Quantum Mechanics. Kedar Nath	Ram	Nath &		
	Co	. Publications, Meerut.				
RI		RENCE BOOKS:				
1	Ma	thews, P.M. and Venkatesan, K. 1976. A Text book of Quantum N	/lechar	nics.		
		ta McGraw Hill Publications, New Delhi.				
2	4	ivastava, R K. 2007. Quantum Mechanics. PHI Learning, New D				
3		sudevan, R. 2008. Quantum Mechanics: A Stochastic Appro	oach.	Narosa		
		blishing House, New Delhi.		T T+11		
4		mard I. Schiff. 2011 Quantum Mechanics. [Third Edition]. Tata	McGra	aw-Hill		
_		ernational Publication, New Delhi.	r •	D (
5		uldhas. G. 2009. Quantum Mechanics, [Second Edition]. PHI	Learn	ng Pvt.		
TAT		l. New Delhi. REFERENCES:				
1		ps://ocw.mit.edu/courses/physics/				
2	-	p://nptel.ac.in/courses/115102023/				
2	http://nptel.ac.in/courses/115102023/ https://www.khanacademy.org/					
4						
5	-	p://nptel.ac.in/courses/122106034/				
	-	SE OUTCOMES (CO)				
		ompletion of the course, the students will be able to				
	D1	Explain the fundamentals of wave mechanics				
CC	CO 2 Apply the concept of eigen energy values and energy states for real time					
		systems in atomic and nuclear levels.				
C	2	Eventuate the encoder meaning of electron contains three	1			

CO 3 Evaluate the angular momenta of electron systems through operator formalism

CO 4	Analyze	the	effect	of	perturbation	on	quantum	systems	using
	approximation methods.								
CO 5	Create sy	Create symmetric and asymmetric functions for identical particles.							

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	Н	Н	L
CO 2	Н	Н	Н	Н	М
CO 3	Н	Н	Н	Н	М
CO 4	М	Н	Н	Н	М
CO 5	М	Н	Н	Н	М

10000	114202	CORE VI: ELECTROMAGNETIC	CEN/	ГСТТ	р тт
18PPH	1111202	THEORY	SEIVI	ESTE	K – 11
COUR	SE OBJEC	TIVES			
The co	urse aims				
•	To impart	knowledge on electrostatics and boundary value	e prob	lems.	
•	To develop	o knowledge on magnetostatics, electromagneti	ics, El	M wav	es and
	waveguide	2S.			
Credite	s: 5		То	tal Ho	urs: 50
UNIT		CONTENTS		Hrs	CO
I	and its a Electric p Laplace o Electric Multipole	atics: Coulomb's law - Electric field - Gauss' applications - Differential form of Gauss' la potential - Equipotential surfaces - Poisson equations – Green's theorem - Unique theore dipoles - Calculation of potential and fiel e expansion - Work and energy in electrostati c and electrostatic energy.	w – and em – ld –	10	CO1
II	conductir Dielectri Field ar susceptib	of images : Introduction - Point charge near ng plane – Point charge near a conducting sphere cs and boundary value problem: Polarizabili nd potential inside a dielectric - Dielecti ility, permittivity and dielectric constant - Bound oblems with dielectrics - Electrostatic energy media.	e. ty – ctric dary	10	CO2
III	Differenti Magnetic localized Torque a Fields of	statics: Magnetic force and field – Biot-Savart la ial equations of magneto statics and Ampere's la vector and scalar potential – Magnetic field current distribution and magnetic dipole mome and force on magnetic dipoles – Magnetization magnetized object – Magnetic susceptibility lity – Energy stored in magnetic field.	aw – ls of ent – on –	10	CO3
IV	induction Lorentz g Conserva theorem Conserva Retarded	 mamics: Electromotive force – Faraday's law Maxwell's equations - Gauge transformation gauge - Coulomb gauge. ation laws: Equation of continuity – Poyntion Poynting vector –Physical significance tion of energy and momentum. potential and radiating systems: Retart Radiation from oscillating dipole (qualitative state) 	on - nting e - cded	10	CO4

		Electromagnetic waves: EM wave equation – Plane					
V		electromagnetic waves - Linear and circular polarization -					
		Reflection and transmission at normal incidence - Reflection	10	CO5			
		and transmission at oblique incidence – Implications: Laws of		05			
		incidence and reflectance, Snell's law, Brewster law -					
		Freshnel's equations - Wave guides and applications.					
TI	EXT	BOOKS:					
1	Dav	vid J. Griffiths. 2000. Introduction to Electrodynamics. [Third Ed	ition].	Narosa			
	Puł	blishing, New Delhi.					
2	Sex	ena, A. K.2009. Electromagnetic Theory and Applications. Naro	sa Pub	lishing			
	Ho	use, New Delhi.		U			
RI	EFER	ENCE BOOKS:					
1		son, J. D. 1999. Classical Electrodynamics. [Third Edition]. B	PB Pul	olisher.			
_		v Delhi.		,			
2	Pur	<i>i S. P.</i> 2016. Classical Electrodynamics. Narosa Publishing House	e. New	Delhi			
3		an, E.C and Balmin, K.G. 2011. Electromagnetic waves and rad					
	,	ond Edition]. Prentice Hall of India, New Delhi.	0	5			
4	-	ajayan, P. 2012. Electromagnetic Theory. [Ninth Editio	nl. L	akshmi			
		lications, Chennai.	1.				
5		pra and Agarwal, 1984. Electromagnetic Theory. Kedar Nath	& Ran	n Nath			
		lishers, Meerut.					
W		EFERENCES:					
1	http	ps://ocw.mit.edu/courses/physics/					
2	http	p://nptel.ac.in/courses/115101005/					
3	https://www.khanacademy.org/						
4							
C	אוזכ	SE OUTCOMES (CO)					
C	JUN						

7 mer c	Arter completion of the course, the students will be able to				
CO 1	Describe the electrostatic force, field and potential for system of statics				
	Charges				
CO 2	Apply the concept method of images and boundary value problem to				
	dielectrics.				
CO 3	Analyze the magnetics force, field and potential for system of statics charges				
	localized current distribution.				
CO 4	Evaluate the relation between electric and magnetic field, conservation laws				
	and radiating systems.				
CO 5	Apply electromagnetic theories to explain about electromagnetic waves and				
	its related phenomena.				

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	Н	Н	М
CO 2	Н	Н	Н	Н	М
CO 3	Н	Н	Н	Н	М
CO 4	Н	Н	Н	Н	L
CO 5	Н	Н	Н	Н	М

MAPPING

18PP	18PPHEL201 ELECTIVE I: MODERN OPTICS SEME						
COUR	SE OBJEC	TIVES					
The co	urse aims						
•	To impart	knowledge on polarization, double refraction and la	sers				
•	To provide	e knowledge on fibre optics, non-linear optics, elec	tro-opti	cal and			
	magneto-o	ptical effects.					
Credit	s: 4	· · · · · ·	Fotal Ho	ours: 50			
UNIT		CONTENTS	Hrs	CO			
	Polarizat	ion and double refraction: Linearly and circularly	7				
		waves-Transverse character of light waves					
	-	and analyser - Production of polarized light - The					
-		d polarizer and the polaroid- Polarization by	7	664			
Ι	0	- Polarization by scattering - Malu's law - The	10	CO1			
		non of double refraction - Normal and oblique					
	incidence	incidence - Interference of polarized light - Quarter and half-					
	wave plat	tes - Analysis of polarized light - Optical activity.					
	Laser Phy	v sics: Basic principles - Spontaneous and stimulated	l 🗌				
	emissions	s, components of a laser, optical amplification	-				
TT	Resonator	10	COD				
II	lasers - R	uby laser - Nd:YAG laser - Gas lasers - He-Ne laser	10	CO2			
	CO ₂ laser	- Semiconductor lasers - Liquid laser - Dye lase	<u>,</u>				
	and Chen	nical lasers - Applications of various laser.					
	Fiber opt	ics: Total internal reflection - Optical Fiber - Glass	5				
	fibers - C	oherent bundle - Numerical aperture – Attenuation	ı				
	-	fibers - Attenuation limit - Single mode and multi					
III	mode fibe	ers – Pulse dispersion in multimode optical fibers	- 10	CO3			
	Ray disp	ersion in multimode step index fibers - Parabolic	-				
	index fib		l				
		n bit rates - Fiber-optic sensors.					
		ar optics: Basic principles - Harmonic generation					
IV		narmonic generation - Phase matching - Third	10	CO4			
		generation - Optical mixing - Parametric	2				
	-	tion – Self focusing of light.					
	U U	-optics and electro-optics: Magneto-optical effects					
		effect - Faraday effect - Voigt effect or magnetic					
V		efraction - Cotton-Mouton effect - Kerr magneto	10	CO5			
•	-	ect - Electro-optical effects - Stark effect - Electric	-				
		fraction - Kerr electro-optic effect - Pockels electro	-				
	optic effe	ст.					

TE	XT BOOKS:						
1	Ajoy Ghatak, 2005. Optics, [Third Edition], Tata McGraw-Hill Publishing, New						
	Delhi [Unit-I, III, V].						
2	Laud, B.B. 2011. Laser and Non-Linear Optics. [Third Edition]. New Age						
	International Publishers, New Delhi. [Unit: II, IV]						
RF	EFERENCE BOOKS:						
1	Silfvast.T, W. 2004. Laser Fundamentals, [Second Edition]. Cambridge University						
	Press, New York.						
2	Jenkins. F.A and White. H.E., Fundamentals of Optics, [Fourth Edition]. McGraw-						
	Hill International Edition, London, 2001.						
3	Lipson, S.G., Lipson. H., and Tannhauser. D.S., 1996. Optical Physics [Third						
	Edition]. Cambridge University Press, London.						
W	EB REFERENCES:						
1	https://ocw.mit.edu/courses/physics/						
2	http://nptel.ac.in/syllabus/115104041/						
3	https://www.khanacademy.org/						
4	http://nptel.ac.in/downloads/115101008/						
CC	DURSE OUTCOMES (CO)						
Af	ter completion of the course, the students will be able to						
CC	D1 Describe the phenomena of polarization and double refraction.						
CC	D2 Explain the principle, construction and working of various lasers.						
CC	D3 Explain the fundamentals of optical fibers and related concepts.						
	04Analyze the various optical non-linear phenomena.						
CC	D 5 Analyze the various electro-optical and magneto-optical effects.						

MAPPING

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	L
CO 2	Н	М	М	М	Н
CO 3	Н	М	М	М	М
CO 4	Н	Н	Н	Н	М
CO 5	Н	Н	Н	Н	М

18PPHEL202

ELECTIVE I: NONLINEAR DYNAMICS

SEMESTER - II

COURSE OBJECTIVES

The course aims

- To impart knowledge on nonlinear dynamical systems.
- To provide the concept of solitons, chaos and its related phenomena
- To impart knowledge on applications of nonlinear dynamical systems.

Credite	Credits: 4 Total Hours: 50				
UNIT	CONTENTS	Hrs	CO		
I	Introduction to nonlinear dynamical systems - The notion of nonlinearity- Superposition principle and its validity - Linear and nonlinear oscillators- Autonomous and nonautonomous systems - Equilibrium points - Phase space - Classification of equilibrium points - Stability of fixed points.	10	CO1		
II	Chaos- simple bifurcations - Saddle node, pitchfork, transcritical bifurcation- The logistic map - Onset of chaos- Other routes to chaos- Period doubling phenomenon - Quasi periodic route to chaos- Intermittency route to chaos- Bifurcation scenario in Duffing oscillator - Chaos in conservative systems.	10	CO2		
III	Solitons - Birth of soliton - Nonlinear dispersive systems- Cnoidal and solitary waves- Scott Russel phenomenon and KdV equation- Fermi-Pasta-Ulam (FPU) lattice problem - FPU recurrence phenomenon- Asymptotic analysis- Numerical experiment of Zabusky and Kruskal.	10	CO3		
IV	Integrability and methods to soliton equations- The notion of integrability - Painleve analysis and its application to KdV equation, nonlinear Schrödinger equation- Lax pair for KdV equations- Inverse Scattering Method and its application to KdV equation- Hirota's bilinearization method- Examples: KdV and nonlinear Schrödinger equation.	10	CO4		
V	VApplications- Chaos and secure communications - Nonlinear optics and biological systems - Role of soliton in condensed matter systems.		CO5		
	BOOKS:				
	hmanan, M and Rajasekar, S. 2003. Nonlinear Dynamics, Integra Patterns. Springer-Verlag, Berlin.	bility,	Chaos		

REFERENCE BOOKS:

- 1 Drazin, P.G. 1992. Nonlinear systems, Cambridge University Press, Cambridge.
- 2 *Leon, G and Kaplan, D.* 1995. **Understanding Nonlinear Dynamics.** Springer, New York.
- 3 *Ablowitz, M.J. and Clarkson, P.A.* 1991. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge.
- 4 *Dodd, R. Eilbeck, J. Gibbson J. and Morris, H.* 1982. Solitons and Nonlinear Wave Equations, Academic, New York.

WEB REFERENCES:

- 1 http://nptel.ac.in/courses/108101002/
- 2 https://ocw.mit.edu/courses/physics/

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

	-				
CO 1	Explain the fundamentals of nonlinear dynamical systems.				
CO 2	2 Apply the concept of chaos and related theories.				
CO 3	Analyze the solitons and related phenomena.				
CO 4	Create the different equations to describe non-linear systems.				
CO 5	Apply solitons and chaos for various real time applications.				

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	L
CO 2	Н	Н	Н	Н	М
CO 3	Н	Н	Н	Н	М
CO 4	М	Н	Н	Н	Н
CO 5	L	Н	Н	М	Н

19	٥p	PI	ΗE	1 2	n 2
10	σr	LI	IC.	LZ	05

ELECTIVE I: BIOMATERIALS

SEMESTER - II

COURSE OBJECTIVES

The course aims

- To impart knowledge on materials used for clinical applications.
- To provide knowledge on various biomedical implants.

Credite	Credits: 4 Total Hours: 5				
UNIT	CONTENTS	Hrs	CO		
Ι	Introduction to biomaterials - Classification- Impact of biomaterials- Tissue response to various biomaterials - Mechanical properties of biomaterials and its importance - Surface properties: Surface energy, Contact angles and critical surface tension - Surface improvements - Thermal treatments - Sterilization - Safety and efficacy testing of biomaterials.	10	CO1		
П	Metals and alloys - Stainless steel - Cobalt-chromium alloys - Titanium based alloys- Nitinol - Metallic corrosion - Biological tolerance of metal implants - Polymers - Polyurethanes - Hydrogels - Polyamides - Silicone - Collagens - Cellulose - Chitin - Alginates - Polymers in biomedical use.	10	CO2		
III	Ceramics - Bioinert ceramics - Carbon - Alumina- Yatria stabilized zirconia - Surface reactive ceramics - Bioglass - Resorbable ceramics - Hydroxyapatite: Properties and applications - Tricalcium phosphate: Properties and applications - Composites.	10	CO3		
IV	Tissue graft – Tissue engineering –Bulk space fillers – Maxillofacial implants – biomaterials in urological practice - Vascular implants – Synthetic blood vessel – Cardiac valve replacement – Blood substitutes – Artificial kidney – Biomaterials in ophthalmology – Contact lenses – Optical implants - Eye shields – Artificial tears –Biosensors – Drug delivery systems.	10	CO4		
V	Biomaterials in orthopedics – Bone: Composition, Structure and Mechanical properties – Osteoblasts – Osteoclasts – Bioelectric effect – Bone healing – Osteoporosis – Bone regeneration with resorbable materials – Teeth: Structure, Composition and Mechanical properties – Biomaterials in dentistry.	10	CO5		

TEXT BOOKS:

1 *Sujata V. Bhat.* 2010. **Biomaterials** [Second Edition]. Narosa Publishing House, New Delhi.

REFERENCE BOOKS:

- 1 *Park. J, Lakes. R. S.* 2007. **Biomaterials: An Introduction** [Third Edition]. Springer Publication.
- 2 *Reema Shukla,* 2014. **Biomaterials** [First Edition]. Nandu Printers & Publishers Pvt. Ltd. Chennai.

WEB REFERENCES:

- 1 http://nptel.ac.in/courses/113104009/
- 2 https://ocw.mit.edu/index.htm

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

	*				
CO 1	Explain the basics of biomaterials, their classification, properties and				
	efficacy testing.				
CO 2	Know about properties and applications of metallic and polymeric				
	materials.				
CO 3	Describe the properties and applications of various ceramics biomaterials				
CO 4	Create various implants for biomedical applications.				
CO 5	Analyze the structure of bone and teeth and apply the various materials for				
	orthopedics and dentistry.				

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	М	М	Н
CO 2	М	Н	Н	М	Н
CO 3	М	Н	Н	L	Н
CO 4	М	Н	Н	L	Н
CO 5	М	М	М	L	Н

18PPHMP201

CORE PRACTICAL II: ADVANCED PHYSICS PRACTICAL II

SEMESTER - II

COURSE OBJECTIVES

The course aims

- To give exposure for understanding the various physical phenomena. •
- To develop the experimental skills to determine physical parameters and • constants.

Credits: 3

Credits: 3 Total Hours: 50				
Ex.No.	Ex.No.			
	(Any Ten Experiments)			
1	Determination of wavelength of He-Ne laser using grating	5	CO1,	
	and find out the thickness of a wire using He-Ne laser.		CO2	
2	Determination of wavelength of light using Michelson's	5	CO1,	
	interferometer.		CO2	
3	Determination of charge of electron by Millikan's oil drop	5	CO1,	
-	experiment.	-	CO3	
4	Determination of compressibility of the given liquid by	5	CO1,	
-	ultrasonic interferometer.	0	CO2	
5	Determination of ultrasonic velocity of sound in the given	5	CO1,	
0	liquid using Aqua grating.	5	CO2	
6	Determination of Young's modulus of glass plate by	5	CO1,	
0	forming elliptical fringes using Cornu's method	5	CO2	
7	Determination of magnetic susceptibility of aqueous	5	CO1,	
1	magnetic solution by Quincke's method.	5	CO2	
8	Verification of Hartmann's Interpolation formula.	5	CO1,	
0	verification of flatimatin's interpolation formula.	5	CO2	
9	Characteristics of photosensitive devices.	5	CO3	
10	Study the polarization of light by reflection and verify the Brewster & Malus law.	5	CO1	
11	Determination of band gap of semiconductors using UV-	E	CO1,	
11	DRS.	5	CO2	
10	Determination of particle size of lycopodium powder using	-	CO1,	
12	He-Ne laser.	5	CO2	
10	Determination of refractive index of a given liquid using	-	CO1,	
13	laser.	5	CO2	
14	Study the characteristic of GM counter.	5	CO3	
15	Study the characteristic of optical fiber: (i) NA, (ii) Bending	F	CO1,	
15	loss and (iii) Attenuation.	5	CO3	

REFERENCE: M.Sc., Physics Laboratory Manual

COURSE OUTCOMES (CO)

CO 1	Understand the various physical phenomena such as absorption,					
	interference, polarization, reflection, dispersion and diffraction of EM					
	wave as well as electrostatic attraction of charges, compressibility of					
	liquid, photosensitivity.					
CO 2	Apply various methods to determine the different physical parameter of					
	given materials such as ultrasonic velocity, magnetic susceptibility, and					
	dielectric constant.					
CO 3	Analyze the characteristics of GM counter, optical fibers and					
	photosensitive devices.					

18PCSPHI201

INTER DISCIPLINARY COURSE I: COMPUTER GRAPHICS AND MULTIMEDIA

SEMESTER - II

COURSE OBJECTIVES

The course aims

- To provide better knowledge of display systems, image synthesis and shape modeling of 3D applications
- To understand the basic concepts related to multimedia including data standards, algorithms and design.

Cre	edits	: 3 To	otal Ho	urs: 40	
UN	IIT	CONTENTS	Hrs	CO	
]	[2D transformations – Clipping – Point clipping – Line clipping – Polygon clipping – Text clipping – Exterior clipping – Window to view port mapping – Interactive input methods – Picture construction techniques.	8	CO1	
Ι	I	3D concepts – 3D transformations – 3D viewing – Visible surface detection methods – Back face detection method – Depth buffer method – Scan line method – Virtual reality environment.	8	CO2	
I	II	Introduction to multimedia – Applications – Hypermedia – Authoring – File formats – Color models – Digital audio – Digital music making – MIDI – Digital video – Video compression techniques – Video performance measurements –Multimedia databases – Animation.	8	CO3	
Г	 Multimedia network services - Network protocols - Requirements for multimedia communications - Multimedia IV conferencing architectures - Quick time movie file format - MHEG - Multimedia file sharing - Multimedia & Internet - Real time interchange. 		8	CO4	
	 Design of a multimedia system - Content based information retrieval - HDTV, ATV, EDTV, IDTV standards - V Development of user interface design - Multimedia broadcasting - Social media sharing - Multimedia development issues - Sample multimedia project. 		8	CO5	
TE		BOOKS:			
1	Dor	nald Hearn and M. Pauline Baker, 2012. Computer Graphics	$\mathbf{C} \overline{\mathbf{V}}$	ersion.	
	[See	Second Edition]. Pearson Education, India.			
2	Dat	vid Hillman, 2008. Multimedia: Technology and applicati	ons. 1	Delmar	
	Cer	ngage Learning, USA.			

REFERENCE BOOKS:

- 1 *John F. Koegel Buford.* 2009. **Multimedia Systems.** [Sixth Edition]. Pearson Education, India.
- 2 Tom Mcreynolds and David Blythe. 2005. Advanced Graphics Programming Using
 OpenGL. Amsterdam, Netherlands.

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Know the concept of 2D transformations, image clipping methods and					
	picture construction techniques.					
CO 2	Describe the 3D concepts and 3D modeling.					
CO 3	Know the fundamentals of multimedia and its various applications.					
CO 4	Describe the various multimedia network services and real time					
	interchange.					
CO 5	Explain the design of various multimedia systems.					
MADD	MADDINC					

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	L	Н	Н	Н
CO 2	М	М	Н	Н	Н
CO 3	М	L	Н	Н	Н
CO 4	М	М	Н	Н	Н
CO 5	М	L	Н	Н	Н

18PCSPHIP201

INTER DISCIPLINARY COURSE PRACTICAL I: MULTIMEDIA TOOLS

SEMESTER - II

COURSE OBJECTIVE:

The course aims

• To give practice in multimedia tools for making combination such as text, audio, images, animations, video and interactive element.

Credits: 2 Total Hours: 20			ours: 20
Ex.No.	LIST OF EXPERIMENTS	Hrs	CO
1	Retouching of images	2	CO 1
2	Gray scale to color conversion of an image	2	CO 2
3	Image optimization	2	CO 1
4	Image manipulation using filters	2	CO 1
5	Image compression	2	CO 1
6	Guide layer effects in an image.	2	CO 3
7	Frame by Frame animation	2	CO 3
8	Interactive animation	2	CO 3
9	Object and motion tweening	2	CO 3
10	Video and audio effects	2	CO 3

COURSE OUTCOMES (CO)

CO 1	Work with retouch, manipulate and compress the given images using
	multimedia tools.
CO 2	Practice on converting gray image to color image.
CO 3	Practice on various kinds animation as well as video and audio effects.

VALUE EDUCATION: HUMAN RIGHTS

SEMESTER - II

COUR	SE OBJECTIVE:		
The co	urse aims		
	To make the students to understand the concepts of human rights		
Credits	s: 2 To	tal Ho	urs: 25
UNIT	CONTENTS	Hrs	CO
I	Human Rights: Definition - Historical Evolution - Classification of Rights - Universal Declaration of Human Rights - International Covenants on Economic and Social Rights - Constitutional Provision for Human Rights - Fundamental Rights - Directive Principles of the State Policy - Indian Constitution.	5	CO1
П	Civil and Political Rights: Right to Work - Right to Personal Freedom - Right to Freedom of Expression - Right to Property - Right to Education - Right to Equality-Right to Religion - Right to Form Associations and Unions - Right to Movement-Right to Family - Right to Contract - Right to Constitutional Remedies-Right to Vote and Contest in Elections - Right to Hold Public Offices-Right to Petition- Right to Information - Right to Criticise the Government- Right to Democratic Governance.	5	CO2
III	Economic Rights: Right to Work - Right to Adequate Wages - Right to Reasonable Hours of Work - Right to Fair Working Conditions - Right to Self Government in Industry - Customer Rights - Social and Cultural Rights - Right to Life - Right to Clean Environment.	5	CO3
IV	Women's Rights: Right to Inheritance - Right to Marriage - Divorce and Remarry -Right to Adoption - Right to Education - Right to Employment and Career. Advancement - Rights Relating to Dowry - Right for Equality - Right for Safe Working Conditions - Children's Rights - Right to Protection and Care – Right to Education - Issues Related with Infanticide - Street Children – Child Labour-Bonded Labour - Refugees Rights - Minority Rights - Dalit Rights- Tribal Rights-Nomads Rights.	5	CO4
V	Human Rights Violation: International, National, Regional Level Organizations to Protect Human Rights - UNO -	5	CO5

National Commission for Human Rights - State Commissions
- Non Governmental Organizations and Human Rights -
Amnesty Terrorism and Human Rights - Emergency and
Human Rights - Judiciary and Human Rights - Media and
Human Rights - Police and Human Rights.

REFERENCE BOOK:

1 *Paul Singh.* **Human Rights and Legal System.** Himalaya Publishing House, New Delhi.

COURSE OUTCOMES:

After completion of the course, the students will be able to

CO 1	Understand the core principles of human rights philosophy.	
CO 2	Know the importance and functions of human rights commission.	
CO 3	Apply their rights for democracy, human rights and gender equality	
CO 4	Know the rights from the Governance, economic and social development	
	through various Acts.	
CO 5	Understand the right to information Act, rights for women, children,	
	Nomads, refugees and various sector of people in our country.	

18PLS	201	CAREER COMPETENCY SKILLS II	SEM	ESTE	R – II
The co	SE OBJECT urse aims enhance en	T IVE: nployability skills and to develop career comp	etency		
Non-cr			-		ours: 15
UNIT		CONTENTS		Hrs	CO
I	Interview language i	Skills – Types of Interview – Groundwork befo – Abide by the dress code – Importance of Boo In Interviews – Tell Us about yourself – Do's an an interview – Concluding an Interview – A M	ły nd	3	CO1
II	– The main Resume –	reparation – Difference between a Resume and n body of Resume – The Career objective in A Fresher's Resume – Antiquity of Soft Skills - ion of Soft Skills – Personality Analysis – nal Skills.		3	C01
III	Group Dis Do's and I	guage – Emotion displayed by Body Language scussion – Group Discussion types – Guideline Don'ts during a Group Discussion – Concludir n – The technique of Summing Up.	S	3	CO1
IV	Skills – Ty Listening S Barriers to Indianisms	Skills – Effective Speaking Guidelines – Readir pes of Reading Skills – Barriers to Speed Read Skills – Stages of Listening – Types of Listening Listening – Beware of Pitfalls – Avoid Errors s in English – Most common errors in the worl t not Quite the same – Words that are Singular	ing – g – : ld –	3	CO2
v		falls: of Beware Self-improvement - Facilitatin y: Language Techniques and Concepts E-	ng	3	CO3
TEXT I	BOOK:			1	
		<i>a.</i> 2011. Personality Development and S d University Press, New Delhi.	oft sk	xills. [Second
REFER	ENCE BOO	DK:			
		2015, English and Soft Skills . [Second Ed rs, New Delhi.	ition].	Orient	Black

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Understand the types of Interviews, Dress Code and Styles.
CO 2	Develop Resume content and structures.
CO 3	Improve body language skills.
CO 4	Know how to represent self through communication.
CO 5	Attain the different level of Learning Skills.

18PPHM301

COURESE OBJECTIVES:

- To impart knowledge on time dependent perturbation theory and its applications.
- To provide knowledge on relativistic quantum mechanics and quantum field theory.

Credits	rdits: 5 To				
UNIT	CONTENTS	Hrs	CO		
I	Time dependent perturbation theory : Time dependent perturbation theory - First and second order transitions - Transition to the continuum (Fermi Golden rule) - Harmonic perturbation - Adiabatic approximation - Sudden approximation.	10	CO1		
II	Scattering theory : Scattering of free particle by potential energy - Application of time dependent theory to Alpha scattering - Rutherford scattering formula - Application of time dependent theory to ionization of hydrogen atom.	10	CO2		
III	Theory of radiation: Application of time dependent perturbation theory to semi classical theory of radiation – Induced absorption, spontaneous emission and stimulated emission – Einstein's coefficients - Einstein's transition probabilities (Absorption and emission) - Quantum mechanical treatment - selection rule for simple harmonic oscillator.	10	CO3		
IV	Relativistic quantum mechanics : Schrodinger's relativistic equation - probability and current densities - Klein-Gordan equation in the presence of electromagnetic field - Application of Klein - Gorden equation to hydrogen atom - Dirac's relativistic equation for a free electron - Free particle solution - Negative energy states (discovery of Positron).	10	CO4		
V	Quantum field theory : Quantisation of real scalar field - Quantisation procedure for particles - Lagrangian formulation - Hamiltonian formulation - Quantum field equations - Second quantization - Quantisation of Schrodinger equation (Non relativistic case) - Quantum equations - Creation, annihilation and number operators.	10	CO5		

 Jai Prakash Nath & Co., Meerut. REFERENCE BOOKS: 1 Mathews P. M. and Venkatesan K. 1976 A Text book of Quantum Mechanics Tata McGraw-Hill Publications, New Delhi. 2 Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath & Co., Publications. 3 Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. 4 Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. 		
Jai Prakash Nath & Co., Meerut. REFERENCE BOOKS: 1 Mathews P. M. and Venkatesan K. 1976 A Text book of Quantum Mechanics. Tata McGraw-Hill Publications, New Delhi. 2 Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath & Co., Publications. 3 Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. 4 Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. 5 Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: 1 1 https://ocw.mit.edu/courses/physics/ 2 http://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/	TE	EXT BOOK:
REFERENCE BOOKS: 1 Mathews P. M. and Venkatesan K. 1976 A Text book of Quantum Mechanics Tata McGraw-Hill Publications, New Delhi. 2 Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath & Co., Publications. 3 Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. 4 Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. 5 Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: 1 1 https://ocw.mit.edu/courses/physics/ 2 http://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/	1	Gupta, Kumar and Sharma. 2010. Quantum Mechanics. [Twenty ninth Edition].
 Mathews P. M. and Venkatesan K. 1976 A Text book of Quantum Mechanics Tata McGraw-Hill Publications, New Delhi. Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath & Co., Publications. Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: https://ocw.mit.edu/courses/physics/ https://www.khanacademy.org/ http://www.feynmanlectures.caltech.edu/ http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 		Jai Prakash Nath & Co., Meerut.
 Tata McGraw-Hill Publications, New Delhi. Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath & Co., Publications. Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narost Publishing House, New Delhi. Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: https://ocw.mit.edu/courses/physics/ https://www.khanacademy.org/ http://www.feynmanlectures.caltech.edu/ http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 	RI	EFERENCE BOOKS:
 2 Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath & Co., Publications. 3 Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. 4 Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. 5 Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: 1 https://ocw.mit.edu/courses/physics/ 2 http://nptel.ac.in/courses/115102023/ 3 https://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 	1	Mathews P. M. and Venkatesan K. 1976 A Text book of Quantum Mechanics.
 Co., Publications. <i>Srivastava R K.</i> 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. <i>Vasudevan, R.</i> 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. <i>Leonard I. Schiff.</i> 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: https://ocw.mit.edu/courses/physics/ https://mptel.ac.in/courses/115102023/ https://www.khanacademy.org/ http://mptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 		Tata McGraw-Hill Publications, New Delhi.
 <i>Srivastava R K.</i> 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi. <i>Vasudevan, R.</i> 2008. Quantum Mechanics: A Stochastic Approach. Narosa Publishing House, New Delhi. <i>Leonard I. Schiff.</i> 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill International Publication, New Delhi. WEB REFERENCES: http://ocw.mit.edu/courses/physics/ http://nptel.ac.in/courses/115102023/ http://www.khanacademy.org/ http://www.feynmanlectures.caltech.edu/ http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 	2	Satya Prakash. 2010. Advanced Quantum Mechanics. Kedar Nath, Ram Nath &
 4 Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narost Publishing House, New Delhi. 5 Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hil International Publication, New Delhi. WEB REFERENCES: 1 https://ocw.mit.edu/courses/physics/ 2 http://nptel.ac.in/courses/115102023/ 3 https://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 		Co., Publications.
Publishing House, New Delhi. 5 Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hil International Publication, New Delhi. WEB REFERENCES: 1 https://ocw.mit.edu/courses/physics/ 2 http://nptel.ac.in/courses/115102023/ 3 https://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO)	3	Srivastava R K. 2007. Quantum Mechanics. PHI Learning Pvt. Ltd., New Delhi.
 5 Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hil International Publication, New Delhi. WEB REFERENCES: 1 https://ocw.mit.edu/courses/physics/ 2 http://nptel.ac.in/courses/115102023/ 3 https://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 	4	Vasudevan, R. 2008. Quantum Mechanics: A Stochastic Approach. Narosa
International Publication, New Delhi.WEB REFERENCES:1https://ocw.mit.edu/courses/physics/2http://nptel.ac.in/courses/115102023/3https://www.khanacademy.org/4http://www.feynmanlectures.caltech.edu/5http://nptel.ac.in/courses/122106034/COURSE OUTCOMES (CO)		Publishing House, New Delhi.
WEB REFERENCES:1https://ocw.mit.edu/courses/physics/2http://nptel.ac.in/courses/115102023/3https://www.khanacademy.org/4http://www.feynmanlectures.caltech.edu/5http://nptel.ac.in/courses/122106034/COURSE OUTCOMES (CO)	5	Leonard I. Schiff. 2011. Quantum Mechanics. [Third Edition]. Tata McGraw-Hill
 https://ocw.mit.edu/courses/physics/ http://nptel.ac.in/courses/115102023/ https://www.khanacademy.org/ http://www.feynmanlectures.caltech.edu/ http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO)		
 http://nptel.ac.in/courses/115102023/ https://www.khanacademy.org/ http://www.feynmanlectures.caltech.edu/ http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO)	W	EB REFERENCES:
 3 https://www.khanacademy.org/ 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 	1	https://ocw.mit.edu/courses/physics/
 4 http://www.feynmanlectures.caltech.edu/ 5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO) 	2	http://nptel.ac.in/courses/115102023/
5 http://nptel.ac.in/courses/122106034/ COURSE OUTCOMES (CO)	3	https://www.khanacademy.org/
COURSE OUTCOMES (CO)	4	http://www.feynmanlectures.caltech.edu/
	5	http://nptel.ac.in/courses/122106034/
After completion of the course, the students will be able to	C	DURSE OUTCOMES (CO)
The completion of the course, the students will be able to	Af	
CO 1 Explain the methods for solving time dependent perturbation systems.	CC	D1 Explain the methods for solving time dependent perturbation systems.
CO 2 Demonstrate the scattering phenomena of alpha particles.	CC	D 2 Demonstrate the scattering phenomena of alpha particles.
CO 3 Utilize the quantum concept to realize the radiation phenomena.	CC	D 3 Utilize the quantum concept to realize the radiation phenomena.
CO 4 Apply the quantum concepts for relativistic case.	CC	D4 Apply the quantum concepts for relativistic case.

CO 5 Analyze the fields that have more number of identical systems.

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	Н	Н	М
CO 2	Н	Н	Н	Н	L
CO 3	М	Н	Н	Н	М
CO 4	М	Н	Н	Н	М
CO 5	М	Н	Н	Н	М

18PPHM302

CORE VIII: ADVANCED ELECTRONICS

SEMESTER - III

COURESE OBJECTIVES:

- To impart knowledge on operating principles of various semiconductor devices.
- To provide knowledge on various IC's and its applications.

		otal Ho	ours: 50
UNIT	CONTENTS	Hrs	CO
Ι	 Special semiconductor devices: Field effect transistor – JFET – Characteristic of JFET – MOSFET - Characteristic of MOFET – FET parameter – FET amplifier – Unijunction transistor – Characteristic of UJT – Tunnel diode - Gunn diode - PIN diode – Varactor diode – Silicon controller rectifier (SCR) – Operation and characteristics – TRIAC – DIAC. Optoelectronic devices: Photoconductive cell – Photodiode – Phototransistor - Photovoltaic cells – Light emitting diode – Laser diode. 	10	CO1
II	Integrated circuit (IC) fabrication: IC technology - Monolithic IC technology - Basic process used in monolithic technology: Epitaxial growth - Masking and etching - Diffusion of impurities - Isolation techniques - Fabricating monolithic resistors, capacitors, diodes and transistors. Operational amplifier: Basics of operational amplifier - IC 741 OPP-AMP - Internal structure - Operational amplifier parameters - Effect of offset - Frequency response and stability.	10	CO2
III (self study)	Applications of operational Amplifier: Summing, Scaling and Averaging amplifier – Subtractor – Voltage follower – Voltage to current converter – Current to voltage converter – Integrator – Differentiator - Analog computation – Logarithmic and antilogarithamic amplifier – Voltage comparator – Schmitt trigger- Crossing detector – Sample and Hold circuits – Voltage regulator – Sawtooth generator –Ramp generator –Active filters – Multivibrator – IC 555 timer – Astable and monostable operations.	10	CO3

		Flip-flops: RS Flip-flops – Clocked RS Flip-flops – D Flip-				
		flop – JK Flip-flop – JK master slave flip-flop				
		Shift registers: Types of Registers – Serial in – Serial out,				
	IV	Serial in - Parallel out, Parallel in - Serial out, Parallel in -	10	CO4		
		Parallel out – Ring counter.				
		Counters: Asynchronous counters – Synchronous counters				
		– Shift counters.				
		D/A and A/D conversions : D/A converter - Variable				
		resistor network - Binary ladder - D/A accuracy and				
	V	resolution - A/D converter - Simultaneous conversion -	10	CO5		
		Counter method - Continuous A/D conversion - Dual				
		slop A/D conversion.				
TE	XT BO	OKS:				
1	Gupta	, S.L., and Kumar, V. 2013. Hand Book of Electronics [39 th E	dition].		
	Praga	tti Prakashan Publication, Meerut. [Unit – I, II, III].				
2	Albert	Albert baul Malvino and Donald P. Leach. 1995. Digital Principles and				
	Applications. [Fourth Edition]. Tata McGraw Hill Publication, New Delhi.					
	[Unit	– IV, V].				
RE	FEREN	ICE BOOKS:				
1	Jacob I	Millman, Christos Halkias, Chetan D. Parikh. 2011. Integrated	d Elect	ronics.		
	[Second Edition]. Tata McGraw Hill Education Private Ltd., New Delhi.					
2	David Bell. 2004. Electronic devices and circuits. [Fourth Edition]. PHI India,					
	New Delhi.					
3	Floyd, T.L. 1993. Digital Fundamentals. [Fifth Edition]. Macmillan Publication,					
	New I	Delhi.				
4	Roy ch	ouchury, Sahil Jain, D. 2003. Linear Integrated circuits. [First]	Edition]. New		
	Age ir	iternational, New Delhi.				
5	Basava	raj, B. 2003. Digital Fundamentals. [First Edition]. Vika	as Pub	lishing		
	House	Pvt., Ltd., Noida.				
W	EB REF	ERENCES:				
1	https:/	//nptel.ac.in/courses/117103063/24#				
2	https:/	//ocw.mit.edu/index.htm				
2 3	- ·	//ocw.mit.edu/index.htm //epgp.inflibnet.ac.in/ahl.php?csrno=28				

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Describe the operating principles of special semiconductor devices and
	Optoelectronic devices.
CO 2	Explain the fabrication of IC's and basic parameters of IC 741.
CO 3	Design the circuit using IC 741 and IC 555 for various applications.

CO 4	Analyze the working of various flip-flops, registers and counters
CO 5	Design the circuits for analog to digital conversion or <i>vice versa</i> .

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	L	М
CO 2	Н	Н	Н	L	М
CO 3	М	L	Н	Н	М
CO 4	М	М	Н	Н	Н
CO 5	М	Н	Н	Н	Н

18PPHM303

CORE IX: MICROPROCESSOR AND MICROCONTROLLER

SEMESTER - III

COURESE OBJECTIVES:

- To impart knowledge on 8085 microprocessor, their design, programming and applications in various fields.
- To provide knowledge on 8051 microcontroller, their design, programming and applications in various fields.

Credits	Credits: 4 Total				
UNIT	CONTENTS	Hrs	CO		
I	8085 Microprocessor: Microprocessor architecture and its operation – 8085 pin out and signals – Microprocessor communication and bus timings – Demultiplexing the bus AD7 - AD0 – Generating control signals – Decoding and Executing an instruction - Functional block diagram of 8085 – 8085 Vectored interrupts.	10	CO1		
II	8085 Assembly Language Programming: 8085 machine language – 8085 assembly language – Instruction classification – Instruction word size – Instruction format – Op code format – Data format – Addressing modes – 8085 Instructions: Data transfer operations – Arithmetic operations – Logic operations – Branch operations – Machine control operations - Simple programs – Debugging a program.	10	CO2		
III	Applications of Microprocessors: Microprocessor based process control – Closed loop control – Open loop control – Example for closed loop control – Crystal growth control – Microprocessor based temperature monitoring systems – Limit setting – operator panel – Block diagram – Analog to digital conversion using ADC 0809 interfacing through PPI 8255 – Block diagram.	10	CO3		
IV	8051 Microcontroller: Introduction – Comparison between Microcontroller and Microprocessors - Architecture of 8051 – Memory organization – Data memory and program memory – Special function registers – Pins and signals – Port operation - Timers / Counters – Serial interface - Interrupts.	10	CO4		

		-			
	Programming the Microcontroller 8051: Programmers model				
	of Intel 8051 - Memory - SFR - PSW - Operand types -				
	Operand addressing - Register, Direct, Indirect and				
V	/ immediate addressing - Data transfer instructions -	10	CO5		
	Arithmetic Instructions - Logic Instructions - Control		000		
	transfer instructions - Simple programs to illustrate				
	arithmetic and logical operations (Sum of numbers, biggest				
	and smallest in an array).				
TE	XT BOOKS:				
1	Ramesh S. Gaonkar. 1996. Microprocessor Architecture, Programmi	ng and	l		
	Application with 8085. [Second Edition]. Wiley Eastern, New Del	hi. [Un	it: I, II,		
	III].				
2	Krishna Kant. 2010. Microprocessors and Microcontrollers	archit	ecture,		
	programming and system. [First Edition]. PHI Learning Priva	te Ltd	., New		
	Delhi. [Unit: IV, V].				
RE	FERENCE BOOKS:				
1	Aditya P. Mathur. 1995. Introduction to Microprocessors. [Third Edition]. Tata				
	McGraw Hill Company, New Delhi.	AcGraw Hill Company, New Delhi.			
2	eventhal, Lance A. 1990. Introduction to Microprocessors: Software, Hardware,				
	Programming, [First Edition]. PHI, New Delhi.				
3	Rafiquzzaman. M. 2002. Microprocessors Theory and Applications	INTE	L and		
	MOTOROLA. [Third Edition]. Tata Mc Graw Hill Company. New	7 Delhi	•		
4	Muhammad Ali Mazidi and Janice Gillispie Mazidi. 2009. The 8051 m	icrocor	ntroller		
	and Embedded System. [Fourth Edition]. Pearson International Pr	ublishi	ng Pvt.		
	Ltd., New Delhi.				
5	Ram. B. 2008. Fundamentals of Microprocessor and Microcontrol	lers, D	hanpat		
	Rai Publications, New Delhi.				
W	EB REFERENCES:				
1	https://nptel.ac.in/courses/108107029/				
2	https://ocw.mit.edu/index.htm				
3	https://epgp.inflibnet.ac.in/ahl.php?csrno=574				
L					

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Explain the fundamentals and architecture 8085 microprocessor.				
CO 2	Describe the 8085 instruction set and addressing modes through simple				
	programs.				
CO 3	Apply the8085 microprocessor to interface the various peripheral devices.				
CO 4	Describe the architecture, programming and interfacing of 8051				
	microcontroller.				
CO 5	Design the simple program based on microcontroller 8051.				

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	Н	Н	L
CO 2	М	М	Н	Н	М
CO 3	М	Н	Н	Н	М
CO 4	М	Н	Н	Н	М
CO 5	М	М	Н	М	Н

MAPPING

ELECTIVE II: PHYSICS OF NANOSCALE

SEMESTER - III

COURESE OBJECTIVES:

- To impart knowledge on basics of nanoscience, preparation and properties, of nanomaterials
- To inculcate knowledge on various characterization methods and applications of nanomaterials.

Credits	Credits: 4 To				
UNIT	CONTENTS	Hrs	CO		
I	 Introduction to the nanoworld: History of nanoscience – Nano and nature – Classification of Nanomaterials – Nanorods, nanoparticles, nanotubes – Size and dimensionality effects. Quantum mechanics of nanosystems: Density of states and quantum confinement – Quantum wells – Quantum wires – Quantum dots – Superlattices. 	10	CO1		
II	Basic aspects of synthesis of nanomaterials: Bottom-Up approach: Sol-gel synthesis – Hydrothermal growth – Thin film growth: Physical vapor deposition – Chemical vapor deposition – Top-Down approach: Ball milling – Microfabrication – Lithography – Ion-beam lithography.	10	CO2		
III	Propertiesofnanostructuredmaterials:Nanoscalemagnetism-Optoelectronicpropertyofbulkandnanostructures-Electronic structure ofnanomaterialsandFermi surface-Luminescencepropertiesofnanomaterials-Specific heat ofnanocrystallinematerials-Meltingpointsofnanomaterials-Mechanicalpropertiesofnanostructuredmaterials.	10	CO3		
IV	Nanoscale characterization techniques: X-ray diffraction and Scherrer method –Scanning electron microscopy – Transmission electron microscopy – Energy Dispersive X-ray analysis – Scanning probe microscopy – Atomic Force microscopy– X-ray photoelectron spectroscopy – Diffuse reflectance spectra - Photoluminescence spectroscopy – IR and Raman spectroscopy - DC magnetization measurements: SQUID – VSM.	10	CO4		

		Prime materials in nanoworld: Carbon nanotubes – Graphene – Metal nanoparticles – Semiconducting		
v		nanoparticles. Application of nanomaterials: Impact of nanoscience in materials science – Nanoelectronics – Nanophotonics – Nanocatalyst – Applications of nanomaterials in textiles –	10	CO5
		Applications of nanomaterials in biology and medicine - Nanocosmetics - Nanosensors - Drug delivery - Cancer		
		therapy - Tissue engineering - Impact of nanomaterials in		
		energy and environment.		
TE	XT I	BOOKS:		
1	Na	S. Ramachandra Rao and Shubra Singh. 2013. Nanos notechnology: Fundamentals to Frontiers. [First Edition]. J		
2	C.N	ns, USA. J.R. Rao. 2013. Nanoworld: Introduction to Nanotech	0.	
		notechnology . [Third Edition]. Navakarnataka Publications Pri	ivate L	imited,
DI		ngalore. RENCE BOOKS:		
N			otochr	alogy
1		arles P.Poole and Frank J. Owens. 2009. Introduction to Nam	lotechi	lology.
2	-	n-Wiley & Sons, USA. <i>ozhong Gao</i> . 2010. Nanostructures and Nanomaterials Synthes	ic Dro	nortion
2		d Applications. [Second Edition]. Cambridge University Press Ir		-
3				
5		<i>Jongh, J.</i> 1994. Physics and Chemistry of Metal Cluster Compo ademic Publishers, Dordrecht.	unus. I	Nuwei
4			lahn M	Vilou l-
4		<i>uneth J. Klabunde.</i> 2001. Nanoscale Materials in Chemistry.] ns, USA.	JOIIII-VV	ney a
3471		REFERENCES:		
1		ps://epgp.inflibnet.ac.in/ahl.php?csrno=831		
2		ps://nptel.ac.in/courses/118102003/		
3		ps://nptel.ac.in/courses/118104008/	alogy/	
4 5		ps://www.sciencedaily.com/news/matter_energy/nanotechno	Jugy/	
	1	p://www.understandingnano.com/index.htm		
		SE OUTCOMES (CO)		
		ompletion of the course, the students will be able to		
CC		Explain the fundamentals of nanoscience.		
CC) 2	Describe the various methods for synthesis of nanoparticles.		
CC) 3	Analyze the various properties of nanomaterials.		
CC	1			(

- CO 4 Apply the different analytical method for the characterization of nanoparticles
- CO 5 Utilize the nanostructured materials for various applications

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	М	М	Н
CO 2	Н	L	М	М	Н
CO 3	Н	М	Н	Н	Н
CO 4	Н	Н	Н	Н	Н
CO 5	L	L	М	Н	Н

MAPPING

18PPHEL302

ELECTIVE II: CRYSTAL GROWTH AND THIN FILM PHYSICS

SEMESTER - III

COURESE OBJECTIVES:

- To impart knowledge on crystal growth theory and techniques
- To provide knowledge on thin films deposition and characterization methods.

Credits	Credits: 4 Total He				
UNIT	CONTENTS	Hrs	CO		
Ι	 Nucleation theory: Nucleation – Homogenous and heterogeneous nucleation - Concept of formation of critical nucleus – Theory of nucleation. Solution Growth Technique: Low temperature solution growth: Solution - Solubility and super solubility – Expression of super saturation – Miers T-C diagram - Crystallizer – Seed preparation and mounting - Slow cooling and solvent evaporation methods. 	10	CO1		
Π	Gel Growth Technique: Principle – Various types – Structure of gel – Importance of gel – Experimental procedure – Chemical reaction method – Single and double diffusion method – Chemical reduction method – Complex and decomplexion method – Solubility reduction method – Advantages of gel method.	10	CO2		
III	 Melt technique: Bridgman technique - Basic process - Various crucibles design - Thermal consideration -Vertical Bridgman technique - Czochralski technique - Experimental arrangement - Growth process. Vapour technique: Physical vapour deposition - Chemical vapour deposition (CVD) - Chemical Vapour Transport. 	10	CO3		
IV	Thin Film Deposition Techniques : Thin Films – Deposition Techniques - Physical Methods – Resistive Heating, Electron Beam Gun, Laser Gun Evaporation and Flash Evaporations, Sputtering - Reactive Sputtering, Radio-Frequency Sputtering - Chemical Methods – Spray Pyrolysis – Spin coating method.	10	CO4		
V	Characterization Technique: Powder and single crystal X- ray diffraction – Fourier transform infrared analysis – EDX analysis - Scanning electron microscopy (SEM) – Atomic force microscopy (AFM) – UV-Vis NIR spectrometer – Photoluminescene (PL) spectrometer – Microhardness.	10	CO5		

TE	XT I	BOOKS:				
1.	Sar	thana Ragavan, P. Ramasamy, P. 2001. Crystal Growth Processes and				
	Me	thods, KRU Publications, Kumbakonam. [Unit- I to III]				
2.	А.	Goswami, A. 1996. Thin Film Fundamentals, [First Edition]. New Age				
	Inte	ernational (P) Limited, New Delhi [Unit-I, IV, V].				
RE	EFER	ENCE BOOKS:				
1	Bric	e, J.C. 1986. Crystal Growth Processes, John Wiley and Sons, New York.				
2	San	gawal, K.1994. Elementary crystal growth, Shan Publisher, UK.				
3	Mai	ssel. L.I. and clang, R. 1970. Hand Book of Thin Films Technology, McGraw-				
	Hill	, New York.				
4	Wil	liam, M. and Steve, D. 1986. Instrumental Methods of analysis, CBS				
	Pub	lishers, New Delhi.				
W	EB R	EFERENCES:				
1	http	ps://epgp.inflibnet.ac.in/ahl.php?csrno=831				
2	http	ps://nptel.ac.in/courses/113104004/				
CC	OUR	SE OUTCOMES (CO)				
Af	ter c	ompletion of the course, the students will be able to				
C	CO 1 Explain the fundamentals of crystal and thin film growth.					
CC	02	Describe the various solution growth and gel growth techniques for grow				
	single crystals.					
CC	D 3	Demonstrate the various melt and vapour growth techniques for grow				

CO 3	Demonstrate the various melt and vapour growth techniques for grow
	single crystals.
CO 4	Apply the different deposition techniques to prepare thin films.
CO 5	Utilize the various analytical methods for characterizing the crystalline

materials.

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO1	Н	Н	М	М	М
CO 2	Н	М	Н	Н	М
CO 3	Н	М	Н	Н	М
CO 4	Н	М	Н	Н	Н
CO 5	Н	М	Н	Н	Н

18PPHEL303

ELECTIVE II: INSTRUMENTAL METHODS OF ANALYSIS

SEMESTER – III

COURESE OBJECTIVES:

- To impart knowledge on different errors, analysis of experimental data and concept of stress analysis.
- To impart knowledge on the basic theories, construction and working of various analytical instruments for analyze the materials.

Credits	s: 4 To	tal Ho	urs: 50
UNIT	CONTENTS	Hrs	CO
I	 Errors and analysis of experimental data: Types of errors – Mean, variance and standard deviation - Sampling techniques – Chi square test. Experimental stress analysis: Stress analysis by strain gauging - high temperature strain gauge techniques – Photoelasticity and holography. 	10	CO1
Π	Thermal analysis : Thermogravimetric analysis - Instrumentation and applications – Differential scanning calorimetric – Instrumentation – Specific heat capacity measurements – Determination of thermochemical parameters – Differential thermal analysis – Basic principles – Melting point determination and analysis.	10	CO2
III	X-ray analysis: Single crystal and powder X-ray diffraction – Interpretation of diffraction patterns – Indexing – Unknown and phase identification – Thin film characterization – Energy dispersive X-ray analysis – X- ray fluorescence method and its applications.	10	CO3
IV	Optical methods and electron microscopy: IR and Raman spectroscopy - X-ray photoelectron spectroscopy – Diffuse reflectance spectra - Photoluminescence spectroscopy – Near field scanning optical microscopy – Transmission electron microscopy – Scanning probe microscopy – Atomic force microscopy.	10	CO4
V	Electrical methods : Hall Effect – Carrier density – Resistivity - Two probe and four probe methods – CV characteristics – Schottky barrier capacitance – Impurity concentration – Electrochemical CV profiling – Limitations. Magnetic methods: SQUID – VSM.	10	CO5

TEXT BOOKS:

- Sivasankar, B. 2012. Instrumental Methods of Analysis, Oxford University Press,
 Oxford.
- 2 *Belk, J.A.* 1979. Electron microscopy and Microanalysis of Crystalline Materials, Applied Science Publishers, London.

REFERENCE BOOKS:

- 1 *Willard, Merritt, Dean and Settle.* 2012. Instrumental Methods of Analysis, CBS Publishers, New Delhi.
- 2 *Philips, V.A.* 1971. Modern Metallographic Techniques and their Applications, Wiley Interscience, USA.

WEB REFERENCES:

- 1 https://nptel.ac.in/syllabus/103108100/
- 2 https://epgp.inflibnet.ac.in/ahl.php?csrno=831
- 3 https://nptel.ac.in/courses/113104004/

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

Explain the different errors, analysis of experimental data and concept of
stress analysis.
Describe the principle and working of different analytical methods for
thermal analysis.
Utilize the X-ray diffraction technique for characterizing the crystals and
thin films.
Explain the fundamentals of various optical and electron microscopic
techniques.
Apply the various analytical methods for measuring the electrical properties
of materials.

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	М	Н	Н	Н	М
CO 2	Н	Н	Н	Н	L
CO 3	Н	Н	Н	Н	М
CO 4	Н	Н	Н	Н	Н
CO 5	Н	М	Н	Н	М

18PPHMP301

CORE PRACTICAL III: ADVANCED ELECTRONICS PRACTICAL

SEMESTER - III

COURSE OBJECTIVES

- To give exposure for understanding the characteristics of various electronic devices.
- To develop skill in circuit construction for simple applications.
- To develop program skill for simple applications based on 8085 and 8051.

Credits: 3 Total Hours: 48					
Ex.No.	LIST OF EXPERIMENT	Hrs	CO		
Semiconductor devices and IC's (Any six experiments)					
1	Characteristics of JFET	4	CO 1		
2	Characteristics of SCR	4	CO 1		
3	Construct RS, D and JK Flip Flops using NAND gates and verify their truth tables.	4	CO 2		
4	Design BCD Counter.	4	CO 2		
5	Design R/2R ladder and binary weighted method of DAC using IC 741	4	CO 2		
6	Construct the shift register using IC 7474.	4	CO 2		
7	Design multivibrators using 555 timer.	4	CO 1, CO 2		
8	Design differentiator, integrator and Schmidt's trigger using IC 741.	4	CO 1, CO 2		
	Microprocessor 8085 (Any three experiments)				
9	Temperature Conversions (F to C & C to F).	4	CO 3		
10	Determination of factorial of the given number.	4	CO 3		
11	Display interfacing.	4	CO 3		
12	Square and square root of the given number.	4	CO 3		
13	DAC interfacing.	4	CO 3		
	Microcontroller 8051 (Any three experiments)	L	I		
14	Traffic control system Interfacing.	4	CO 3		
15	Finding of Biggest and Smallest number.	4	CO 3		
16	Stepper motor interfacing.	4	CO 3		
17	Seven segment display interfacing.	4	CO 3		
18	ADC Interfacing.	4	CO 3		

REFERENCE BOOKS:

- 1 *Poorna Chandar. S* and *Sasikala, B.* 2006. Electronics Laboratory Primer, A Design approach. S. Chand, New Delhi.
- 2 *Botkar, K.R,* 1983. **Integrated Circuits.** [Second Edition]. Khanna Publishers, New Delhi.
- 3 *Swami. G.T.* 2006. Microprocessor 8085 lab manual. [First Edition]. Firewall Media, New Delhi.

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

	1 ,
CO 1	Explain the characteristics of various electronic devices.
CO 2	Design the electronic circuits for simple applications using IC's.
CO 3	Create the program for simple applications based on 8085 and 8051.

18PECPHI301

INTER DISCIPLINARY COURSE II: MODERN BIOMEDICAL INSTRUMENTATION

SEMESTER - III

COURESE OBJECTIVES

- To impart knowledge on the human physiological systems, operation theatre and medical imaging equipments.
- To impart basic knowledge on modern instruments used in biomedical field, their construction and working.

Cre	Credits: 4 Total Hours: 4				
UN	JIT	CONTENTS	Hrs	CO	
]	[Human physiological systems: Cells and their structures – Nature of cancer cells -Transport of ions through cell membrane - Resting and action potential - Bioelectric potentials – Different systems of human body.	8	CO1	
I	I	Electrodes and transducers: Components of the biomedical instrument system- Electrodes: Microelectrodes - Depth and Needle electrodes - Surface electrodes - Half cell potential – Transducers: Active and Passive.	8	CO2	
п	I	Biopotential recorders: Electrocardiography (ECG) - Lead configuration - Recording setup - Electroencephalogram (EEG) - Brain waves - Placement of electrodes - EEG recording set up - Electromyography (EMG) - ERG - EOG - Audiometer.	8	CO3	
Г	V	Physiological assist devices: Pacemakers – Defibrillators: AC defibrillator – DC defibrillator - Heart Lung Machine – Ventilators- Blood pressure measurement - Blood flow meters: LASER blood flow meters- – Blood pH measurement -		CO4	
V	Measurement of Respiration rate –Thermometer.Diathermy and Modern Imaging: Surgical diathermy –VShortwave & Microwave diathermy – Ultrasonic diathermy –Electron Microscope – Ultrasonic Imaging – Angiography- X-ray machine – CT Scan – Magnetic Resonance Imaging.		8	CO5	
TE	XT I				
1	Aru	umugam, M. 2011. Biomedical Instrumentation. [Second Edition	n]. An	uradha	
	Puł				
RE	REFERENCE BOOKS:				
1	Kha	ndpur R.S., 2010. Hand book of Biomedical Instrumentation, Ta	ata Mc	Graw	
	Hill	l, New Delhi.			

2 Leslie Cromwell, Fred J. Webell., Erich A. Pfeffer. 2006, **Bio-medical** Instrumentation and Measurements, Prentice Hall of India, New Delhi.

WEB REFERENCES:

- 1 http://biomedikal.in/2009/12/lecture-notes-on-biomedical-instrumentation/
- 2 https://epgp.inflibnet.ac.in/ahl.php?csrno=1174

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Know the fundamentals of human physiological systems and bioelectric
	potentials.
CO 2	Describe the operations of electrodes and transducers.
CO 3	Explain the types of bioelectric signals and instruments to be used to detect.
CO 4	Evaluate the operation of physiological assist devices.
CO 5	Describe the operation theatre and medical imaging equipments.

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	М	L	М	Н
CO 2	Н	Н	М	Н	Н
CO 3	Н	Н	М	Н	Н
CO 4	М	Н	L	Н	Н
CO 5	М	М	L	Н	Н

18PBCPHI301

INTER DISCIPLINARY COURSE II: MOLECULAR BIOPHYSICS

SEMESTER - III

COURESE OBJECTIVES

The course aims

• To impart knowledge about the physics of biomolecules and cells.

Credits	tal Ho	urs: 40	
UNIT	CONTENTS	Hrs	CO
Ι	Water and its interaction: Structure, physical and unusual properties of water molecule - Weak interactions in aqueous system - hydrogen bonding between water molecules, types of hydrogen bond in biological system, electrostatic interaction of water with charged solute, interaction of water with nonpolar compound - Formation of hydrogen bonds with polar solutes - Vander waal's interaction - Role of weak interactions in biological system - Hydrophobic effect - Molecular complementarity.	8	CO1
Π	Carbohydrates: Introduction and classification - Asymmetry and isomerism. Structure and conformation of monosaccharide - Structure and properties of disaccharides (Sucrose & Lactose) - Structure and functional relationships of polysaccharides - Storage polysaccharides (Starch & Glycogen) - Structural polysaccharides (Cellulose & Chitin), glycosaminoglycans, proteoglycans and glycoproteins.	8	CO2
III	Amino acids : Classification, structure and properties (physical and chemical) of amino acids - Protein: functions - Primary and secondary structure- conformation of peptide group, α -helix and β -pleated sheets - Fibrous protein- structure and functions of α -keratin and silk fibroin - Tertiary structure - organization of globular proteins and forces stabilize the tertiary structure - Quaternary structure - subunit interaction and symmetry - Identification and determination of proteins: MS, MALDI - TOF, X- ray crystallography and NMR spectroscopy.	8	CO3
IV	Lipids: General classification, physical and chemical properties of lipids - Properties of lipid aggregates - Miscelles, bilayers and liposomes - Biological membranes: Fluid Mosaic model - role of lipids and proteins in cell membranes - Membrane transport: simple and facilitated diffusion - Movement of water across the cell membrane - Active transport (Na ⁺ - K ⁺ ATPase).	8	CO4

		Nucleic acids: Structure of nitrogenous bases, nucleosides					
		and nucleotides - DNA: Structural features of B-DNA					
		(Watson and Crick model), A-DNA and Z- DNA. Properties	ies				
-	V	of DNA - Buoyant density, viscosity, denaturation,	^{1,} 8 CO5				
		renaturation, Tm, hypo and hyperchromism - Super Coiled	Ũ	200			
		DNA - superhelix topology-linking number-twist-writhing					
		number - RNA: Structure and functions of mRNA, tRNA					
		and rRNA.					
TI	EXT	BOOKS:					
1	Nel	son David, L. and Cox, M. M. 2011. Lehninger Principles of Bioche	emistry	v. [Fifth			
	Edi	tion]. Macmillan/ Worth, New York. (Unit I)					
2	Doi	uald Voet and Judith, G. Voet. 2011. Biochemistry. [Fourth Edition].	John V	Viley			
	anc	l Sons, New York. (Unit I-V).					
RI	EFER	ENCE BOOKS:					
1	Lod	ish, H et al., 2008. Molecular Cell Biology. [Sixth Edition]. W.H.	Freem	an and			
	Co	npany, New York.					
2		nash Upadhyay, Kakoli Upadhyay and Nirmalendhe Nath. 2003.	-	hysical			
	Ch	emistry: Principles and Techniques. Himalaya Publishers, Mun	nbai.				
W	EB F	REFERENCES:					
1	http	ps://epgp.inflibnet.ac.in/ahl.php?csrno=1174					
2	http	os://nptel.ac.in/syllabus/syllabus.php?subjectId=102101006					
3	http	os://phys.org/physics-news/					
C	OUR	SE OUTCOMES (CO)					
		ompletion of the course, the students will be able to					
C	D1	Know the interaction of water molecules with physiological					
CC	2 2	Explain the structure and properties of different carbohydrates	molec	ules			
CC	D 3	Describe about amino acids, protein, methods for determination	n of pr	oteins			
CO 4 Know about lipids and biological membrane.							
CC	CO 5 Describe the structure of nucleic acids, DNA and RNA.						
L							

MAPPING

PSO CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	L	М	Н	Н
CO 2	М	L	М	Н	Н
CO 3	М	Н	Н	Н	Н
CO 4	М	М	М	Н	Н
CO 5	М	М	Н	Н	Н

18PPHM401

CORE X: SPECTROSCOPY

SEMESTER - IV

COURESE OBJECTIVES

- To impart knowledge on different spectroscopic techniques to characterize the materials.
- To provide knowledge on working of various spectrometers.

Credits:	otal Ho	ours: 50	
UNIT	CONTENTS	Hrs	CO
Ι	 Microwave Spectroscopy: Rotation of molecules and their spectra – Diatomic molecules – Rigid rotator – Non-rigid rotator and their spectra – Rotational spectra of polyatomic molecules – Microwave spectrometer – Chemical analysis by microwave spectroscopy. Infrared Spectroscopy: Vibrating diatomic molecules- The energy of diatomic molecules – Simple Harmonic oscillator – Anharmonic oscillator – Diatomic vibrating rotator – Vibrations of polyatomic molecules – IR spectroscopy 	10	CO1
П	Raman Spectroscopy: Raman effect – Characteristics of Raman lines - Classical theory – Quantum theory – Rotational Raman spectra - Vibrational Raman spectra – Mutual exclusion principle – Structure determination from Raman and IR spectroscopy - Raman spectrometer- Sample handling – Resonance Raman scattering – Coherent Anti- stokes Raman scattering (CARS) – Surface enhanced Raman scattering (SERS) and its applications.	10	CO2
III	 UV Spectroscopy: Origin and theory – Franck-Condon principles – Transition probability – Types of transition – Chromophore and related terms – Instrumentation – sample preparation and solvent effects – Measurement of the spectrum - UV-Diffusion reflectance spectroscopy – Applications of UV spectroscopy. Photoluminescence Spectroscopy: Basics of photoluminescence – Fluorescence – Phosphorescence – Instrumentation – Applications. 	10	CO3
IV	NMR Spectroscopy: Quantum mechanical theory of NMR – Relaxation Times - Spin-spin and spin lattice – Chemical shift – Spin-spin coupling between two and more nuclei – NMR spectrometer- Chemical analysis by NMR	10	CO4

		spectroscopy.			
		ESR Spectroscopy: Quantum mechanical theory of ESR –			
		Hyperfine structure study – Triplet states study of ESR –			
		Design of ESR spectrometer - Application of ESR.			
		NQR Spectroscopy: General principles of NQR - Energy			
		levels of quadruple transitions for half-integral spins -			
		Design of NQR Spectrometer – Application of NQR.			
	V	Mossbauer Spectroscopy: Principle of Mossbauer Effect -	10	CO5	
		Schematic arrangement of Mossbauer spectrometer -			
		Isomer shift - Quadruple interaction - Magnetic hyperfine			
		interactions – Applications of Mossbauer spectroscopy.			
TI	EXT B	OOKS:			
1	Arula	lhas, G. 2013. Molecular Structure and Spectroscopy. [Second I	Edition]. PHI,	
	New	Delhi.			
2	Kaur,	H. 2018. Spectroscopy, [Fourteenth Edition]. Pragati Prakasha	n, Mee	rut.	
RI	EFERE	NCE BOOKS:			
1	Banw	ell, C.N. 1972. Fundamentals of Molecular Spectroscopy. [Fou	rth Ed	ition].	
	Tata	Mc Graw Hill, New Delhi.			
2	Strau	ghan, B.P. and Walkar, S. 1976. Spectroscopy. Vol. II. [Sec	ond E	dition].	
	Chap	man & Hall, New York.			
3	Gupti	a, S.L., Kumar, V. and Sharma, R.C. 1993. Elements of Spectrosco	opy. [N	linth	
	Editi	on]. Pragathi Prakasahan, Meerut.			
4	v	anarayana, D.N. 2001. Electronic Absorption Spectroscopy and	l Relat	ed	
		niques. University Press, India.	_		
5		val, G.R. and Anand, S.K. 2018, Spectroscopy, [Fifth Edition	n]. Hii	nalaya	
	Publi	shing, Mumbai.			
W	EB RE	FERENCES:			
1	-	://epgp.inflibnet.ac.in/ahl.php?csrno=5			
2	https://nptel.ac.in/courses/102103044/				
3	https://en.m.wikipedia.org/wiki/Spectroscopy				
4	https	://nptel.ac.in/downloads/122101001/			
C	OURS	E OUTCOMES (CO)			

After completion of the course, the students will be able to

CO 1	Explain the about IR and microwave spectroscopy.
CO 2	Describe the principle, working and application of Raman spectrometer.
CO 3	Analyze the materials using UV and photoluminescence spectroscopy.
CO 4	Analyze the interaction of EM wave with mater under magnetic field.
CO 5	Apply NQR and Mossbauer spectroscopy methods to characterize the
	materials.

PSO					
СО	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	Н
CO 2	Н	Н	Н	Н	Н
CO 3	Н	Н	Н	Н	Н
CO 4	Н	Н	Н	Н	Н
CO 5	Н	Н	Н	Н	М

MAPPING

18PPHM402

CORE XI: NUCLEAR AND PARTICLE PHYSICS

SEMESTER - IV

COURESE OBJECTIVES

- To impart knowledge on nuclear structure, radioactivity, nuclear fission, nuclear fusion and elementary particles.
- To motivate the students to analyze the utility of nuclear energy, reactors, and detectors.

Credits: 4 Total Hours: 5						
UNIT	CONTENTS	Hrs	CO			
I	Nuclear structure: Constituents of nuclei – Nuclear radius, charge, spin, mass and magnetic moment – Determination of nuclear charge and mass – Binding energy – Nuclear stability – Liquid drop model – Semi-empirical mass formula – Mass parabolas – Nuclear shell model- Collective model - Optical model –Nuclear Forces - Exchange forces – Yukawa's meson theory – Yukuwa potential – Ground state of deuteron – Magnetic moment – Tensor forces – Spin dependence and charge independence of nuclear forces.	10	CO1			
Π	 Radioactive decays: Properties of radioactive rays – Alpha decay – Gamow's theory of alpha decay – Geiger Nuttall law – Alpha particle spectra – Neutrino hypothesis – Fermi's theory of beta decay – Beta ray spectra - Selection rules – Gamma decay - Selection rules – Internal conversion – Nuclear isomerism. Detection of Nuclear Radiation: Interaction of charged particles and γ-rays with matter – Ionization chamber – Proportional counters – Geiger-Muller counters – Semiconductor detectors – Scintillation counters. 	10	CO2			
III (Self study)	 Neutron Physics: Properties of neutron – Classification of neutrons according to energy – Sources of neutron – Neutron detectors. Nuclear Fission: Characteristics of fission – Mass and energy distribution of nuclear fragments – Nuclear chain reactions – Four factor formula – Bohr Wheeler's theory of nuclear fission – Fission reactors – Power and breeder type reactors. Nuclear Fussion: Basic fusion processes – Source of stellar energy– Controlled thermonuclear reactions – Pinch effects – Laser fusion techniques. 	10	CO3			

		Nuclear Reactions: Types of Nuclear reactions-		
	IV	10	CO4	
	v	Elementary Particles : Four types of interactions and classifications of elementary particles – Isospin – Isospin quantum numbers – Strangeness and hyper charge – Hadrons – Baryons – Leptons – Invariance principles and symmetries – Invariance under chage-parity (CP), time (T) and CPT – CP violation in neutral K-meson decay – Quark model – SU(3) symmetry – Gell-Mann Nishijma formula – Gauge theory of weak and strong interactions – Charm, bottom and top quarks.	10	CO5
TE	EXTI	BOOK:		
1	Tau	al, D.C. 2017. Nuclear Physics. [Fifth Edition]. Himalaya Publi	shing	House,
	0	v Delhi.	0	-,
RF	EFER	ENCE BOOKS:		
1		<i>rma, R.C.</i> 2007. Nuclear Physics . [Sixth Edition]. K. Nath & Co., 1	Meeru	-
2		osal, S.N. 2010. Nuclear Physics. [Third Edition]. S. Chand C		
-		v Delhi.	ompu	ly Lea,
3		neth S. Krane. 1987. Introductory Nuclear Physics. [Third Ec	lition	Wilev
		ia Ltd., New Delhi.		,, ncy
4		<i>ng Samuel, S. M.</i> 2010. Introductory Nuclear Physics. Prentice-	Hall o	India
т		v Delhi.	un 0.	i intana,
5		<i>id Griffiths.</i> 2008. Introduction to Elementary Particles. [Sec	rond F	Revised
		tion]. Wiley, New York.		
w		EFERENCES:		
1	r	os://phys.org/physics-news/		
2	-	ps://nptel.ac.in/courses/115104043/		
3	-	ps://nptel.ac.in/syllabus/115101006/		
	1	SE OUTCOMES (CO)		
		ompletion of the course, the students will be able to		
	D1	Explain the nuclear structure, binding energy, stability and for	ces acti	ng on
		Nucleons	co acti	
	02	Know the various radioactive decay process and the devices w	hich ar	A 1150d
	52	to detect them.	incii al	c useu

CO 3	Analyze the process of nuclear fission and fusion as well as the
	characteristics of neutron.
CO 4	Analyze the various nuclear reactions and related theories.
CO 5	Know the different types of elementary particles and their interactions.

MAPPING

PSO					
СО	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	Н
CO 2	Н	Н	Н	Н	Н
CO 3	Н	Н	Н	Н	Н
CO 4	Н	Н	Н	Н	Н
CO 5	Н	Н	Н	Н	М

18PPHM403		CORE XII: COMPUTATIONAL PHYSICS	SEM	ESTEI	R – IV		
COURE	ESE OB	JECTIVE					
The cou		-					
• To impart knowledge on numerical differentiation, integration and MATLAB							
	-	outation.					
Credits			Тс	otal Ho	urs: 50		
UNIT		CONTENTS		Hrs	CO		
	Num	erical differentiation: Finding roots of a polynom	ial –				
		ion method – Newton Raphson method – Solutic					
Ι		taneous linear equation by Guass elimination me		10	CO1		
-		ution of ordinary differential equation by E		10	COI		
	Rung	e-Kutta fourth order method for solving first o	order				
	0	ary differential equations.					
	Num	erical integration: Newton's cotes formula	a –				
	Trape	zoidal rule – Simpson's 1/3 rule – Simpson's 3/8	rule				
II	- Boo	le's rule - Gaussian quadrature method (2 point a	nd 3	10	CO2		
	point	formula) - Giraffe's root square method for sol	ving				
	algeb	raic equation.					
	Matla	b fundamentals: Introduction - Matlab featur	es –				
	Deskt	op windows: Commands, workspace, comm	nand				
	histor	y, array editor and current directory - Matlab	help				
III	and d	lemos – Matlab functions, operators, and comma	inds.	10	CO3		
	Basic	arithmetic in Matlab - Basic operations with sca	lars,	10	200		
	vector	rs and arrays - Matrices and matrix operation	ns –				
	Comp	olex Numbers - Matlab built – In functions - Illustra	ative				
	Exam	ples.					
	Matla	b programming: Control flow statements : if, else	, else				
IV	if, sw	itch statements - for, while loop structures - i	break	10	CO4		
	staten	nent -Input/output commands - Script M-file	es –	-			
	functi	on M-files – Controlling output.					
	Matla	b graphics: 2D plots – Planar plots, log plots, sc	atter				
T 7	plots,	Contour plots - Multiple figures, graph of a fund	ction				
V	– Title	es, labels, text in a graph – Line types, marker ty	/pes,	10	CO5		
	colors	s - 3D graphics - Curve plots - Mesh and surface j	plots				
	– Illus	strative examples.					
TEXT B	OOKS	:					
		an, M.K. 1996, Numerical methods in science and	l Engi	ineerin	ı g . [5th		
Edit	ion]. N	ational Publishing Co., Chennai.					

2 *Rudra Pratap,* 2016. Getting Started with MATLAB. [Seventh edition]. Oxford University Press, New Delhi.

REFERENCE BOOKS:

- 1 *Sastry, S.S.,* 2005. **Introductory methods of Numerical analysis**. [Fourth Edition] Prentice Hall of India, Delhi.
- 2 *John Mathews and Kurtis Fink,* 2006. **Numerical Methods to using MATLAB**. [Fourth Edition], Prentice Hall, New Jersey.
- 3 *Sergey E. Lyshevski,* 2005. Engineering and Scientific Computations using MATLAB, [First Edition], John Wiley & Sons, USA.
- 4 *Kuncicky, D.C.* 2003. **Matlab Programming.** [Fourth Edition]. Pearson Education.

WEB REFERENCES:

- 1 https://epgp.inflibnet.ac.in/ahl.php?csrno=25
- 2 https://nptel.ac.in/courses/103106118/
- 3 https://www.mathworks.com/discovery/scientific-computing.html

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

- CO1 Solve the problems using various numerical differentiation methods.
- CO 2 Solve the problems using various numerical integration methods.
- CO 3 Explain the fundamentals of Matlab.
- CO 4 Design the simple Matlab program.
- CO 5 Create the different 2D and 3D graphics using Matlab.

MAPPING

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	L	Н	Н	Н	Н
CO 2	L	Н	Н	Н	Н
CO 3	М	Н	Н	Н	Н
CO 4	М	Н	Н	Н	Н
CO 5	М	Н	Н	Н	М

18PPHMP401

CORE PRACTICAL IV: COMPUTATION USING MATLAB

SEMESTER - IV

COURSE OBJECTIVES

The course aims

• To develop computation skill for computing simple equations through Matlab programming.

Credits:	LIST OF EXPERIMENT	otal Ho	ui 0. 00	
Ex.No.	(Any twelve experiments)	Hrs	CO	
1	Matlab Programming – Charging of a capacitor in an RC circuit with three time constants.	3	CO 1	
2	Matlab programming – Full wave rectifier – Determination of (a) peak-to-peak value of ripple voltage (b) DC output voltage (c) Discharge Time of the Capacitor (d) period of ripple voltage.	3	CO 1	
3	Matlab programming – Frequency response of a low pass Op-Amp filter circuit.	3	CO 2	
4	Matlab programming – Plot of voltage and current in RLC circuit under steady state conditions.	3	CO	
5	Matlab programming – NPN Transistor – plotting Input & Output characterisitics.	3	CO	
6	Matlab Programming – Roots of a quadratic equation and solution of a system of linear equations.	3	CO	
7	Matlab Programming – Solution of ordinary differential equations.			
8	Matlab programming – Diode – Plot of forward characteristics & load line plot- estimation of operating point.	3	CO	
9	Matlab Programming – Solutions of roots of polynomial equations by graphic method	3	CO	
10	Matlab Programming – Runge-Kutta method.	3	CO	
11	Matlab Programming - Newton - Raphson method.	3	CO	
12	Matlab Programming – Solutions Mean, median & standard deviation.	3	CO	
13	Matlab Programming – Curve fitting & Interpolation.		CO	
14	Matlab Programming – Matrix summation, subtraction and multiplication.	3	CO 4	
15	Matlab Programming – Matrix inversion and solution of simultanuous Equations.	3	CO	

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Compute simple equations such as charging of a capacitor and full wave			
	rectifier equation through Matlab program.			
CO 2	Plot the characteristic curve of NPN transistor, diode, RLC circuit,			
	Frequency response curve of low pass filter			
CO 3	Find out the solution for differential equation as well as numerical			
	problems.			
CO 4	Compute matrix and find out the solution.			

1. SUBMISSION OF RECORD NOTE BOOKS AND PROJECT DISSERTATION:

Candidates appearing for Practical Examinations and Project Viva-Voce shall submit Bonafide Record Note Books/ Dissertation prescribed for Practical/ Project Viva-Voce Examinations, otherwise the candidates will not be permitted to appear for the Practical/ Project Viva-Voce Examinations.

2. PASSING MINIMUM AND INTERNAL MARK DISTRIBUTION (Theory, Practical and Project)

(i) THEORY

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Theory paper with a passing minimum of 38 marks in External out of 75.

Internal Marks Distribution [CA- Total Marks: 25]

Attendance	: 5 Marks
Assignment	: 5 Marks
Seminar	: 5 Marks
Internal Examinations	: 10 Marks
Total	: 25 Marks

(ii) PRACTICAL

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 50 marks put together out of 100 in the Comprehensive Examination in each Practical paper with a passing minimum of 30 marks in External out of 60.

Internal Marks Distribution [CA- Total Marks: 40]

Experiment	: 10 Marks (10-12 Experiments)
Attendance	: 5 Marks
Record	: 5 Marks
Internal Examinations	: 20 Marks
π.(.1	. 40 M

Total : 40 Marks

External Marks distribution [CE - Total Marks: 60]

Formula, symbol rep	presentation :	10	Marks
Circuit, model grap	h :	10	Marks
Observation	:	20	Marks
Calculation	:	10	Marks
Viva-Voce	:	05	Marks
Result	:	05	Marks
	Total :	60	Marks

(iii) PROJECT WORK / DISSERTATION

- The project work shall be carried out by each student in the IV semester and has to complete the work at the end of the Semester.
- Upon completion of the project work/dissertation the candidate will be required to appear for a Viva-Voce conducted by an external examiner.
- The student has to attend 2 reviews before completing his/her Project.
- A candidate failing to secure the prescribed passing minimum in the dissertation shall be required to re-submit the dissertation with the necessary modifications.

Mark Distribution Pattern [Total Marks: 200]

Comprehensive Examination (CE): 150 Marks

Continuous Assessment (CA) : 50 Marks

Total : 200 Marks

The candidate shall be declared to have passed the Examination, if the candidate secure not less than 100 marks put together out of 200 in the Comprehensive Examination in each Project with a passing minimum of 75 marks in External out of 150.

Internal Mark Distribution [CA - Total Marks: 50 Marks]

E	-				
Research work done	: 20 Marks				
Attendance	: 5 Marks				
Observation note	: 10 Marks				
Review	: 15 Marks (Three reviews)				
Total	: 50 Marks				
External Mark Distribution [CE - Total Marks: 150 Marks]					
Project report	: 100 Marks				
Presentation	: 25 Marks				
Viva-Voce	: 25 Marks				
Total	: 150 Marks				

3. QUESTION PAPER PATTERN AND MARK DISTRIBUTION (THEORY) Question Paper Pattern and Mark Distribution (For 75 marks)

1. PART – A (5 x 5 = 25 Marks)

Answer ALL questions (One question from each UNIT with Internal Choice) 2. PART – B (5 x 10 = 50 Marks)

Answer ALL questions (One question from each UNIT with Internal Choice)

Question Paper Pattern and Mark Distribution (For 100 marks) 1. PART – A (5 x 5 = 25 Marks) Answer ALL questions (One question from each UNIT with Internal Choice)

2. PART – B (5 x 15 = 75 Marks)

Answer ALL questions (One question from each UNIT with Internal Choice)

CAREER COMPETENCY SKILLS- METHODOLOGY OF ASSESSMENT

• On Line Objective Examination (Multiple Choice questions) – Semester I

- 100 questions-100 minutes
- Twenty questions from each UNIT.
- On line examination will be conducted at the end of I Semester.

o Viva Voce - Semester II

- The student has to come in proper dress code and he/she should bring 2 copies of resume for the Viva Voce
- The student may be asked to
 - Give Self introduction
 - Submit the resume to the examiner(s) and answer the questions based on it.
 - Speak on any given topic for at least two minutes.
 - Give a presentation for 10 minutes on a topic of their choice.
 - Sit with other students in a group for a discussion.

IDC OFFERED BY THE DEPARTMENT

S.No	Subject code	Subject	Semester	Offered to
1.	18PPHCHI301	Solid State Physics	III	M.Sc., Chemistry

18PPHCHI301

IDC I: SOLID STATE PHYSICS

SEMESTER - III

COURSE OBJECTIVES

- To impart knowledge on the structure of crystals, X-ray diffraction and theories of Magnetism.
- To provide basic concepts regarding dielectrics and modern engineering materials.

Credite	Credits: 4 Total Hours: 45		
UNIT	CONTENTS	Hrs	CO
I	Introduction to crystal systems: Crystal Lattice - Unit cell - Seven classes of crystals - Bravais lattice - Miller indices - Structure of crystals - Simple cubic structure - Hexagonal close packed structure - Face centered cubic structure - Body centered cubic structure - Sodium chloride structure - Zinc blende structure - Diamond structure.	9	CO1
П	X-ray diffraction and crystal defects : Diffraction of X-rays by crystals - Bragg's law in one dimension - Experimental method of X-ray diffraction - Laue method - Rotating crystal method - Powder photograph method - Point defects - Line defects - Surface defects - Volume defects - Effects of crystal imperfections.	9	CO2
III	Theory of magnetism: Different types of magnetic materials - Classical theory of diamagnetism (Langevin's theory) - Langevin's theory of paramagnetism - Weiss theory of paramagnetism - Qualitative explanation of Heisenberg's internal field and quantum theory of ferromagnetism.	9	CO3
IV	Dielectrics: Fundamental definitions in dielectrics - Different types of dielectric polarization - frequency and temperature Effects on polarization - Dielectric loss - Qualitative study of local field or internal field - Clausius-Mossotti relation - Determination of dielectric constant - Dielectric breakdown - Properties of different types of insulating materials.	9	CO4
V	Modern engineering materials: Polymers – Plastics – Ceramics – Super strong materials – Cermets - High temperature materials – Thermo electric materials – Pizoelectric and pyroelectric materials – Electrets - Nuclear engineering materials - Metallic glasses - Optical materials – Fiber optic materials and uses - Super conductors - Properties - Types and applications – Shape memory alloys.	9	CO5

TEXT BOOK:

1 *Arumugam, M.* 2008. Materials Science. [Third Edition]. Anuradha Publications, Kumbakonam.

REFERENCE BOOKS:

- *Kittel, C.* 1996. Introduction to Solid State Physics. [Seventh Edition]. John Wiley & Sons (Asia) Pvt. Ltd., New Delhi.
- 2 *Pillai, S.O.* 2005. Solid State Physics. New Age International, New Delhi.
- 3 *Rita John.* 2014. **Solid State Physics.** McGraw Hill Education (India) Private Limited, New Delhi
- 4 *Saxena, B.S., Gupta, R.C.* and *Saxena. P.N.* 2015. Solid State Physics. [Twelfth Edition]. Pragati Prakashan, Meerut.

WEB REFERENCES:

- 1 https://ocw.mit.edu/courses/physics/
- 2 http://nptel.ac.in/courses/115105099/
- 3 https://www.khanacademy.org
- 4 https://epgp.inflibnet.ac.in/ahl.php?csrno=28

COURSE OUTCOMES (CO)

After completion of the course, the students will be able to

CO 1	Explain the concepts crystal and structure.
CO 2	Describe the different types of X-ray diffraction methods and crystal
	defects.
CO 3	Describe the theories about magnetic materials
CO 4	Know the fundamentals of dielectric materials and their behavior.
CO 5	Evaluate the properties and applications of various modern engineering
	materials.

MAPPING

PSO					
CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	Н	Н	Н	Н	Н
CO 2	М	М	М	Н	Н
CO 3	L	М	М	L	М
CO 4	L	М	L	L	М
CO 5	М	Н	М	М	М